World Aquaculture Performance Indicators (WAPI)
Information, knowledge and capacity for Blue Growth
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>World Aquaculture Performance Indicators (WAPI): a user-friendly tool</td>
<td>3</td>
</tr>
<tr>
<td>The potential of World Aquaculture Performance Indicators as a research and educational tool</td>
<td>6</td>
</tr>
<tr>
<td>Fish as a poor people’s food</td>
<td>7</td>
</tr>
<tr>
<td>Aquaculture growth potential: perspective from Short-term projection of fish demand</td>
<td>10</td>
</tr>
<tr>
<td>Nigeria: faster aquaculture growth needed to bridge fish demand-supply gap</td>
<td>11</td>
</tr>
</tbody>
</table>
Introduction

World Aquaculture Performance Indicators (WAPI) is an endeavour initiated by the FAO Fisheries and Aquaculture Department to develop user-friendly tools for compiling, generating and providing easy access to quantitative information on aquaculture sector performance at the national, regional and global levels. Key elements of the initiative are synopsized in the article on pages 3–5; more detailed background documents are cited in notes 1 and 2.

Data analysis tools

As user-friendly data analysis tools built on publicly available FAO data and statistics, two WAPI modules have been formally published:

- WAPI Aquaculture Production Module (WAPI-AQPRN; note 3) analyses the status and trends (1950–2016) of aquaculture production (quantity and value) of over 650 species items in nearly 250 countries and areas under different farming environments (inland waters, marine areas and all areas).

- WAPI Fish Consumption Module (WAPI-FISHCSP; note 4) includes 10 indicators – three nutrition indicators and seven food indicators – to examine food supply and utilization patterns (with a focus on the contribution of fish to food and nutrition) in 270 countries and areas for six decades, from the 1960s to the 2010s. The module focuses on 14 fish/seafood items, but also includes 26 non-fish/seafood items.

Two draft WAPI tools have not been formally published, but are available for test use upon request: (i) the WAPI prototype that includes 72 templates on the social, economic and environmental performance of aquaculture, as well as the status and trends of its development; and (ii) a more comprehensive, sophisticated WAPI Aquaculture Production Module that covers nearly 900 species items and that contains more advanced analytical functions.

WAPI-AQPRN and WAPI-FISHCSP will be routinely updated to the latest available data and enhanced with new or more refined analytical functions. Another three thematic WAPI modules (on fish trade, gross domestic product and employment) are in the pipeline.

Technical papers

WAPI-AQPRN and WAPI-FISHCSP are supported by FAO Fisheries and Aquaculture Technical Paper 607 (FATP 607): Short-term projection of global fish demand and supply gaps (note 5); see the policy brief on page 10 for some key results of the paper.

FATP 607 develops a model to estimate potential future fish demand-supply gaps at the country (nearly 200 countries or territories), regional (about 40 areas), and global levels for nine species groups. The projection results (in a five-year horizon) can be used to facilitate policy-making and sector management in aquaculture and fisheries.

FATP 607 serves as a background document that provides technical, contextual analyses to help users understand the quantitative information provided through various tables and charts in the two WAPI modules. On the other side, the WAPI modules serve as an electronic appendix for more detailed information that cannot be presented in the technical paper due to space limit. Such integration would be a norm for all WAPI modules – see notes 6, 7 and 8 for three WAPI technical papers in the pipeline.
Policy briefs

Information and knowledge in WAPI modules and associated technical papers can be tailor-made into policy briefs (in various forms) to address specific issues. Some examples are the following:

- Two thematic articles, one on the contribution of fish to animal protein (pages 7–9) and the other on growth potential in global aquaculture (page 10).
- A country brief on aquaculture potential in Nigeria (pages 11–12).
- A PowerPoint presentation on Global fish demand and supply outlook with a focus on China (note 9).

WAPI as an educational and research tool

Six FAO interns have participated, to different extents, in the WAPI initiative. Four of them have made significant contributions to the development of WAPI-AQPRN and WAPI-FISHCSP; three of them are coauthors of forthcoming WAPI technical papers; and one of them has joined FAO as professional staff. Their experience indicates that WAPI has great potential to become an educational and research tool; see the article on page 6 for more information.

Work with us

WAPI is devoted to strengthening information, knowledge and capacity for managing Blue Growth in aquaculture and fisheries (note 10). Its methodology can be applied to fish and other food sectors for assessment and monitoring of the Sustainable Development Goals (SDGs) (note 11). We welcome your feedback and contribution to help move the initiative forward. Updated information on WAPI can be found at www.fao.org/fishery/statistics/software/wapi/en. Comments, suggestions and inquiries can be sent to WAPI@fao.org.

NOTES

10. Learn more about FAO’s Blue Growth Initiative from the brochure on Achieving Blue Growth through implementation of the Code of Conduct for Responsible Fisheries. (also available at www.fao.org/fileadmin/user_upload/newsroom/docs/BlueGrowth_LR.pdf)
World Aquaculture Performance Indicators (WAPI): a user-friendly tool

Background

Aquaculture is a young and fast growing sector with complex environmental, social and economic impacts. Quantitative assessment and monitoring of the aquaculture sector performance is essential to evidence-based policy making and sector management.

There is a general lack of quantitative information on aquaculture sector performance. When available, such information tends to be scattered in the literature, leading to underutilization and sometimes misuse of available information. Misusing data from different sources (or even the same source) to create incorrect or misleading indicators is not an uncommon phenomenon.

In light of this situation, FAO has initiated the development of a user-friendly tool that compiles, generates and provides easy access to quantitative indicators on aquaculture sector performance at the national, regional and global levels. The tool is called World Aquaculture Performance Indicators (WAPI) tool.

The WAPI tool is intended to become a user-friendly instrument that helps experts utilize data and information from various sources to assess and monitor aquaculture sector performance in social, economic, environmental and governance terms and detect important trends of parameters of interest in the sector.

The primary users of the WAPI tool would be professionals in the aquaculture and fisheries sector, including policymakers, planners, managers, advisors, analysts, researchers, students, etc.

Experts often produce their own favorite tables and graphs and sometimes wish to use tables and graphs produced by others. The WAPI tool can become a shareware that provides a way for professionals to capitalize their sporadic efforts into standardized templates for convenient use not only by themselves but also by others. The WAPI tool can also provide a venue for detail analysis and information that are unable to be accommodated by technical reports or journal articles.

A prototype WAPI tool

A prototype WAPI tool has been developed by FAO based on various official and/or publicly available data sources. The draft WAPI tool covers 233 countries (or territories), 42 country groups
The draft WAPI tool includes 72 templates in two sections. Section I includes templates on aquaculture’s social, economic and environmental performance, while section II contains templates on the status and trend of aquaculture development.

The draft WAPI tool uses these templates to analyze the data and statistics included and present the resulting quantitative indicators in well-structured tables and graphs. Simple analyses such as comparisons across time, countries, species and products have been standardized for many indicators in the draft tool. The draft tool also includes some advanced analysis such as measuring correlations between variables (Figure 2) and projection of fish demand and supply in the future (Figure 3).

The draft tool in its current status can be used to help generate policy briefs, factsheets or other thematic reports for policymaking or sector management. But there is still plenty of room for improvement and expansion. Tables and graphs in the tool can be linked to corresponding sources of information and data for users to obtain more contextual information. The tool can also be used to gain broader information and deeper understanding of specific aspects of aquaculture sector performance for a given country, region or the entire world. As the tool consolidates enough information, templates can be developed to address specific policy or management issues. It is also feasible to develop or incorporate weighting schemes, performance index or other processes to measure the net impact (i.e., overall performance) of aquaculture sector.

The draft WAPI tool was designed to facilitate easy modification and update: Replacing or appending new data in the data templates would automatically update all the tables and graphs in the related indicator templates and hence lead to new inferences, policy and management advice on the sector.
Feedbacks
During the FAO Expert Workshop on Assessment and Monitoring of the Aquaculture Sector Performance (November 2012, Gaeta, Italy)\(^4\), the prototype WAPI tool was presented to experts from different disciplines for comments, suggestions and collaborations.

The expert participants were generally impressed by the draft WAPI tool and recognized its value as not only a tool for sector assessment and monitoring but also a mechanism to facilitate demand-driven data collection and compilation.

However, it was noted during the workshop that accurate and reliable data are essential to functionalize the many templates included in the draft WAPI tool; without which the templates would be like “castles in the air”.

One concern was that the tool in its current format may be too complicated, even for professionals, and may be difficult to maintain considering the enormous amount of data needed to substantiate the templates included in the tool.

A suggestion was to break the gigantic prototype WAPI tool into various components. It was believed that simpler, more tailor-made WAPI components equipped with substantial data would be easier to develop and maintain, more user-friendly, and more attractive to potential users. Another related suggestion was to develop WAPI components through a bottom-up process that starts with specific countries or regions. As such, the tool could become a vehicle to facilitate data dissemination from national to regional to global.

Way forward
The WAPI tool would be a long-term, continuing, and improving-by-using process to consolidate and promote efforts in assessment and monitoring of the aquaculture sector performance.

“Contribute and share” – this is the motto of the WAPI tool. But it entails persistent and coordinated effort to turn the idea into reality. With its unique comparative advantage in data collection and dissemination, FAO can play a major role in this endeavour. However, partnership with other stakeholders and experts is essential to its success.

The draft WAPI tool is being modified and refined according to the feedbacks received from the workshop and elsewhere. In order to make sure that the tool serves the needs of its targeted users, we welcome your comments, suggestions and collaboration on the WAPI tool.

Should you wish to learn more about the WAPI tool and/or receive a copy of the draft WAPI tool for testing, please send a request to WAPI@fao.org.

More information can be obtained by writing to:
Junning.Cai@fao.org
Nathanael.Hishamunda@fao.org

1 Data sources used by the draft WAPI tool include (1) FAO Food Balance Sheet, (2) FishSTAT, (3) FAO-INFOOD data on nutrition, (4) FAO Statistics Division’s data on food security, (5) UN COMTRADE, (6) UN Population, (7) ILO’s data on employment, (8) International Monetary Fund’s World Economic Outlook (WEO) database, (9) World Bank’s World Development Indicators (WDI), (10) Global Aquaculture Performance Index (GAPI), (11) China Fishery Statistics Yearbook, among others.

2 Section I of the draft WAPI tool includes templates on (1) basic socio-economic conditions (population & demographics, food & nutrition security status, health, gross domestic product, etc.), (2) the socioeconomic contributions of aquaculture (food and nutrition, GDP, foreign exchange, employment, labor income, gender, etc.), (3) the environmental impacts of aquaculture (land, water, wild species, feed & feed ingredients, energy, etc.), and (4) performance indicators measuring the tradeoffs between the benefits and costs of aquaculture (labor productivity, land productivity, feed efficiency, energy efficiency, etc.).

3 Section II of the draft WAPI tool includes templates on (1) consumption & demand, (2) production & supply, (3) commodities & trade (including bilateral trade), (4) Food Balance Sheet, (5) resources used in aquaculture (labor, land, water, feed, seed, financial resources, etc.), (6) prices (farm-gate, wholesale, retail, trade, etc.), (7) productivity & efficiency, and (8) projections.

4 This article is based on the contents of the forthcoming FAO Report on the Gaeta workshop.
The potential of World Aquaculture Performance Indicators as a research and educational tool

FAO has continued its efforts in developing World Aquaculture Performance Indicators (WAPI) to assess the economic, social and environmental performance of the sector. WAPI is an ongoing initiative to develop a tool to compile, generate and disseminate knowledge and information for evidence-based policy-making and sector management in aquaculture and aquaculture value chains. Under this initiative a WAPI prototype has been developed and tested. The prototype contains sample templates on fish production, trade and consumption as well as other social, economic and environmental aspects of aquaculture at global, regional and/or national levels. Based on the prototype, two tailor-made WAPI modules, one on fish production and the other on fish consumption, will be disseminated for public use by the end of 2017. Five technical papers that would serve as background documents for WAPI modules on various subjects are being prepared and will be published during 2017–2018.

While the ultimate goal of WAPI is to provide a tool to facilitate evidence-based decision making, its potential of becoming a research tool has become evident during its development. WAPI templates developed in Microsoft Excel could initially help researchers analyze data, generate information and later facilitate result dissemination. For example, the chart below is a figure generated by a WAPI template for the paper “Assessment and monitoring of global fish demand and supply: perspective from a short-term projection model”. The WAPI template automates the generation of charts which can be easily updated or modified—with a few mouse clicks to update or redo the chart for different species, time horizons, and geographic focus. Thus, WAPI can significantly facilitate the analytical research process of examining future fish demand and supply at the national (nearly 200 countries), regional (about 40 country groups) and global levels for 9 species groups. The WAPI templates can be further refined by users into custom-designed templates for specific research applications.

Four interns at FAO have contributed to the development of WAPI modules and to the preparation of the corresponding background documents. Their experiences indicate that WAPI could become an educational tool to help students acquire knowledge and information and improve their skills on data analysis. After about six months of intensive, learning-by-doing process of WAPI development, all the interns have acquired or improved skills in using spreadsheet and statistical software (e.g. STATA) for data analysis and presentation. Participation in preparing the background documents has also enhanced their analytical skills.

FAO would continue to explore the potential of WAPI as a research and educational tool and welcome the participation and collaboration of researchers and students in the development of WAPI templates.

Comments on WAPI initiative can be sent to: WAPI@fao.org.

This chart illustrates and compares the status (represented by the X-axis) and trends (represented by the Y-axis) of per capita fish consumption in different continents.

2 These papers, include “Assessment and Monitoring of Global Fish Demand and Supply: Perspective from A Short-Term Projection Model” “Assessment and Monitoring of the Contribution of Aquaculture and Fisheries to GDP,” “Assessment and Monitoring of Species Diversification in Global Aquaculture,” “Assessment and Monitoring of Global Tilapia Markets” and “Assessment and Monitoring of Human Resource and Employment in Aquaculture and Fisheries: A Case Study on China”.

Written by:
Junning Cai
FAO Fisheries and Aquaculture Department, Rome, Italy
E-mail: Junning.Cai@fao.org
Fish as a Poor People’s Food

World per capita fish consumption increased from 12.6 kg in the early 1970s to 14.2 kg in the early 1990s and 19.8 kg in the early 2010s. Fish consumption for countries vary greatly, ranging from less than 1 kg per capita per year in some inland countries to over 100 kg per capita per year in some island economies. Fish accounted for 15.6 percent of global animal protein intake in the early 1970s. The ratio declined slightly to 15.1 percent in the early 1990s and bounced back to 16.3 percent in the early 2010s. The fish share in the early 2010s is higher than poultry meat (16.1 percent), pig meat (14.5 percent), bovine meat (11.0 percent), and mutton & goat meat (2.2 percent).

These numbers are obtained from the World Aquaculture Performance Indicator (WAPI) module on fish consumption developed based on FAO Food Balance Sheet data. The module contains similar information at the country (more than 200 countries or territories) and regional (nearly 40 country groups) levels. This article uses a chart template in the module to illustrate some interesting patterns of the contribution of fish to animal protein in different countries or territories.

Early 1970s

Figure 1 shows the early-1970s scenario of fish’s contribution to animal protein (y-axis) in 149 countries or territories with respect to their per capita animal protein intake (x-axis). Bubble size measures each country’s population, and the origin is set at the world average.

First let us look at countries or territories on the left side of the coordinate plane (i.e. quadrant II and III). Generally speaking, these were relatively poor countries or territories in developing regions with below-average animal protein intake. While their fish share (in their animal protein intake) vary from close to zero to nearly 80 percent, most of these countries or territories are located in quadrant II, which means that countries or territories with low animal protein intake tend to have a high fish share. The 40 countries or territories in quadrant II accounted for 35 percent of world population in the early 1970s, and China (accounting for 21 percent of world population at that time) was one of them.

In contrast, countries and territories on the right side of the coordinate plane are concentrated in quadrant IV, which means that countries or territories with above-average animal protein intake tends to have below-average fish share. The 47 countries or territories in quadrant IV are mostly countries or territories in developed regions or relatively rich countries or territories in developing regions.

Written by:
Junning Cai
FAO Fisheries and Aquaculture Department, Rome, Italy
E-mail: Junning.Cai@fao.org

Source: FAO Aquaculture Newsletter 58 (April 2018, pp. 49–51)
In summary, Figure 1 reveals an L-shape pattern indicating that fish was a relatively more important source of animal protein for relatively poor countries or territories yet a relatively less important source of animal protein for relatively rich countries or territories. In this sense we can say that fish were a poor people’s food in the early 1970s.

Early 1990s

The L-shape pattern continued after 20 years in the early 1990s and actually became more pronounced. As indicated in Figure 2, countries or territories in quadrant II accounted for 40 percent of world population in the early 1990s (compared to the 35 percent in the early 1970s), whereas those in quadrant IV accounted for 26 percent of world population in the early 1990s, much higher than the 5 percent for countries or territories in quadrant I.

Early 2010s

A first look at Figure 3 may give you an impression that the “fish being a poor people’s food” pattern continued in another 20 years later in the early 2010s. But the numbers beg the difference. Countries or territories in quadrant II of Figure 3 accounted for only 19 percent of world population in the early 2010s (far below the 40 percent in the early 1990s), whereas countries or territories in quadrant IV and I of Figure 3 accounted for the same percentage (24 percent) of world population in the early 2010s.

All these changes were caused by the move of China (which accounted for 19 percent of world population in the early 2010s) from quadrant II in the early 1990s to quadrant I in the early 2010s. Economic growth has driven China’s animal protein intake from far below the world average in the early 1970s (Figure 1) to a little below the world average in the early 1990s (Figure 2) and then to above the world average in the early 2010s (Figure 3), whereas its fish share has maintained at a level slightly above the world average. In this sense we may say that China has made fish less a poor people’s food.

Including China, there are four countries that have moved from other quadrants in the early 1990s to quadrant I in the early 2010s. The other three are Myanmar (from quadrant II to quadrant I) and two small island developing states (SIDS), Jamaica and Saint Kitts and Nevis (from...
and Tobago), Ecuador and Saudi Arabia. Conversely, four countries moved from quadrant IV to quadrant III, including one land-lock developing countries (Uzbekistan), one SIDS (Belize), Jordan and Lebanon.

Looking into the future, what would the pattern look like in 20 years (i.e. in the 2030s) or 40 years (i.e. in the 2050s)? It is difficult to predict. Past experience indicates that the L-shape pattern for fish’s contribution to animal protein has been persistent for 40 years from the early 1970s to the early 2010s. However, China’s move from quadrant II in the early 1990s to I in the early 2010s may foretell some change. Instead of taking a wild guess, let us settle with using the pattern of poultry meat in the early 2010s (Figure 4) to show that the L-shape pattern is not a norm for all animal protein sources.

SEE ALSO
Aquaculture growth potential: perspective from short-term projection of fish demand

A short-term projection model has been developed to assess and monitor potential fish demand and supply gaps with the aim of facilitating evidence-based decision-making at the national, regional and global levels. The model projects the potential demand and supply gaps in nearly 200 countries or territories, about 40 regions and the entire world for nine species groups at different aggregate levels. Technical details and results are reported in the FAO Fisheries and Aquaculture Technical Paper 607, “Short-term projection of global fish demand and supply gaps”. Some results are highlighted in this article.

Given that fish prices and consumer preferences remain the same, income growth would drive world per capita fish demand up by 47 million tonnes. If aquaculture in every country follows its recent 5-year linear trend, global aquaculture production would increase by 19 million tonnes in the early 2020s. This trend aquaculture growth would cover only 40 percent of the projected demand growth, leaving a fish demand-supply gap of 28 million tonnes. The demand-supply gap for shellfish (i.e. crustaceans and molluscs) would be bigger than that for finfish – they would account for, respectively, 55 percent and 45 percent of the 28 million tonnes fish demand-supply gap.

While world aquaculture production following its recent trend would grow 4.5 percent annually from the mid-2010s to the early 2020s, it would take a 9.9 percent annual growth to fill the world fish demand-supply gap in the early 2020s. Should the world aquaculture production fall short of the required annual growth rate, and assuming world capture fisheries production would remain at the current level, the world fish price would have to increase to reduce fish demand in order to clear the market (i.e. no demand-supply gap). The trend aquaculture growth in only 17 countries would be sufficient to cover the demand growth driven by population and income growth; excess demand is expected to occur in 170 countries. More detailed results for both the standard and conservative projections are summarized in the table above.

The results of the demand-supply gap analysis are useful to decision-makers in both the public and private sectors. Knowledge and understanding of potential future fish demand as well as demand-supply gaps could facilitate the establishment of evidence-based regulations, policies and development strategies and plans, help development agencies or donors set targets and allocate resources, assist fish farmers in business planning, and guide investors in investment planning. But clear understanding of the results, including their merits and constraints, is essential to properly and flexibly using them to facilitate evidence-based decision-making.

Table – Demand-supply gaps: standard versus conservative projections

<table>
<thead>
<tr>
<th>Species</th>
<th>Per capita demand (kg/year)</th>
<th>Total demand (million tonnes)</th>
<th>Demand-supply gap (million tonnes)</th>
<th>Ratio of supply growth to demand growth (%)</th>
<th>Annual aquaculture growth rate needed (%)</th>
<th>Trend aquaculture growth rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard¹</td>
<td>Conservative¹</td>
<td>Standard²</td>
<td>Conservative²</td>
<td>Standard¹</td>
<td>Conservative¹</td>
</tr>
<tr>
<td>Fish</td>
<td>24.68</td>
<td>22.76</td>
<td>190.44</td>
<td>173.87</td>
<td>28.32</td>
<td>11.82</td>
</tr>
<tr>
<td>Finfish</td>
<td>17.31</td>
<td>6.08</td>
<td>134.55</td>
<td>123.65</td>
<td>12.67</td>
<td>1.82</td>
</tr>
<tr>
<td>Marine fish</td>
<td>8.26</td>
<td>7.82</td>
<td>64.00</td>
<td>59.97</td>
<td>10.67</td>
<td>6.67</td>
</tr>
<tr>
<td>Freshwater & diadromous fish</td>
<td>9.06</td>
<td>8.25</td>
<td>70.55</td>
<td>63.68</td>
<td>1.99</td>
<td>-4.85</td>
</tr>
<tr>
<td>Shellfish</td>
<td>7.37</td>
<td>6.69</td>
<td>55.89</td>
<td>50.22</td>
<td>15.65</td>
<td>10.00</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>2.69</td>
<td>2.46</td>
<td>20.59</td>
<td>18.67</td>
<td>5.22</td>
<td>3.30</td>
</tr>
<tr>
<td>Shell molluscs</td>
<td>3.95</td>
<td>3.56</td>
<td>29.88</td>
<td>26.61</td>
<td>8.61</td>
<td>5.36</td>
</tr>
<tr>
<td>Cephalopods</td>
<td>0.72</td>
<td>0.67</td>
<td>5.42</td>
<td>4.93</td>
<td>1.82</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Source: Authors’ estimation.

Notes: Cells with zero or no value are left blank. ¹Standard projections are based on mean income elasticity coefficients and medium-fertility-variant population projections. ²Conservative projections are based on the lower bound of the 95 percent interval of income elasticity coefficients and low-fertility-variant population projections.

Source: FAO Aquaculture Newsletter 57 (September 2017, p. 48)

SEE ALSO

In 1980, 73 million Nigerians consumed 984 thousand tonnes of fish – the equivalent of 13 kg per person per year and nearly 1 kg more than the world average. Between 1980 and 2013, the country’s population increased to 172 million and total fish consumption increased by 1 333 thousand tonnes to 2 317 thousand tonnes – allowing for per capita fish consumption to remain virtually unchanged. Nigeria’s 2013 per capita fish consumption had however fallen to 70 percent of the world average (20 kg per person per year). Despite fish consumption remaining stable, overall per capita animal protein intake in the country fell from 10.07 g in 1980 to 9.85 g in 2013. This decline is the result of a decrease in per capita protein intake from meat and milk (two of the largest animal protein categories), which were unable to keep pace with population growth (Figure 1).

The increase in fish production in Nigeria accounts for 55 percent of the intensification of its total fish consumption (1 333 thousand tonnes) between 1980-2013; the remaining 45 percent was covered by the growth in its net import (i.e. import minus export) of fish. Nigeria’s fish trade deficit increased from 350 thousand tonnes to nearly 2 million tonnes between 2000 and 2011 before declining to 940 thousand tonnes in 2013 thanks to a rapid increase in domestic fish production (Figure 2).

Written by:
Kathleen Allen
FAO Intern
E-mail: Kathleen.Allen@fao.org
Anne Fadilla Rachmi
FAO Intern
E-mail: Anne.Rachmi@fao.org
Junning Cai
FAO Fisheries and Aquaculture Department, Rome, Italy
E-mail: Junning.Cai@fao.org

Source: FAO Aquaculture Newsletter 57 (September 2017, pp. 36–37)
Fish production in Nigeria grew from 260,000 tonnes in 1980 to over 1 million tonnes in 2015. While capture fisheries is still the main source of fish production in the country, the share of aquaculture has increased from 2 percent in 1980 to over 30 percent in 2015 (Figure 3). Over the past 35 years, aquaculture production in Nigeria has grown 12 percent a year (compared to the world average 8 percent) from a little over 6,000 tonnes in 1980 to nearly 320,000 tonnes in 2015 (Figure 4). The country is the largest aquaculture fish producer in sub-Saharan Africa, accounting for 54 percent of the total fish production in the sub-region.

Nigeria’s aquaculture focuses mainly on freshwater fishes, with catfish species accounting for 64 percent of the country’s aquaculture production in 2015 (Figure 5).

Looking into the future, if other factors affecting fish demand (e.g. fish price and consumer preference) remain unchanged, Nigeria’s fish demand in the early 2020s would be 600,000 tonnes higher than the level in the mid-2010s because of income and population growth in the country. On the other side, following the current trend, its aquaculture production in the early 2020s would be 150,000 tonnes higher than the level in the mid-2010. This would only be able to cover a quarter of the 600,000 tonnes of demand hike driven by the income and population growth, resulting in a 450,000 tonnes demand-supply gap. The country’s aquaculture would need to grow at 22 percent a year from the mid-2010s to the early 2020s in order to bridge the potential demand-supply gap.
Let us work together to unleash the power of data and information.