Previous Page Table of Contents Next Page


Annex 5. Capillary rise and data set for soil hydraulic functions


Capillary rise

To calculate the capillary recharge, it is possible to apply Darcy's Law, which can be written for the unsaturated zone as:

(1)

where:

q = soil water flux (positive upward) (cm/d);
K(q) = unsaturated hydraulic conductivity (cm/d);
h = soil pressure head (cm); and
z = vertical coordinate (positive upward) (cm).

Water balance considerations of an infinitely small soil volume result in the continuity equation for soil water:

(2)

Combination of Equations 1 and 2 results in the general equation for flow through the unsaturated soil:

(3)

To calculate the capillary rise, the unsaturated hydraulic conductivity, K(q), needs to be known. The hydraulic conductivity is a function of the moisture content and the moisture content is a function of the pressure head. The soil-water retention curve is the graph representing the relationship between pressure head and water content. Each soil has a unique soil-water retention curve. Wösten et al. (2001) published a series of physical soil characteristics for functional soil physical horizons (Tables A5.1, A5.2 and A5.3). These were based on measured values of soil-water retention and hydraulic conductivity. This information can be extrapolated with caution to other soil layers that have identical soil textures. In a similar manner, Mualem (1976) developed a catalogue of hydraulic properties of soils.

Table A5.1. Dutch nomenclature known as Staring Series based on texture, organic matter content, and sand fraction - topsoils


Dutch nomenclature1

Clay-silt
(< 50 mm)
(%)

Clay
(< 2 mm)
(%)

Organic matter
(%)

M50 (mm)

Number curves
(-)

Topsoils

Sand B1

Fine to moderately fine sand

0-10


0-15

105-210

32

B2

Loamy sand

10-18


0-15

105-210

27

B3

Sandy loam

18-33


0-15

105-210

14

B4

Sandy clay loam

35-50


0-15

105-210

9

B5

Coarse sand



0-15

210-2 000

26

Silt







B7

Silt


8-12

0-15


6

B8

Light silt loam


12-18

0-15


43

B9

Heavy silt loam


18-25

0-15


29

Clay







B10

Silty clay loam


25-35

0-15


12

B11

Silty clay


35-50

0-15


13

B12

Clay


50-100

0-15


9

Loam







B13

Loam

50-85


0-15


10

B14

Silt loam

85-100


0-15


67

1 Translation of the Dutch nomenclature by means of FAO textural classes based on the clay, silt and sand fractions (FAO, 1990a).

Source: Wösten et al., 2001.

Table A5.2. Dutch nomenclature known as Staring Series based on texture, organic matter content, and sand fraction - subsoils


Dutch nomenclature1

Clay-Silt
(< 50 mm)
(%)

Clay
(< 2 mm)
(%)

Organic matter
(%)

M50
(mm)

Number curves
(-)

Subsoils

Sand







O1

Fine to moderately fine sand

0-10


0-3

105-210

109

O2

Loamy sand

10-18


0-3

105-210

14

O3

Sandy loam

18-33


0-3

105-210

23

O4

Sandy clay loam

33-50


0-3

105-210

9

O5

Coarse sand



0-3

210-2 000

17

Silt







O8

Silt


8-12

0-3


14

O9

Light silt loam


12-18

0-3


30

O10

Heavy silt loam


18-25

0-3


25

Clay







O11

Silty clay loam


25-35

0-3


11

O12

Silty clay


35-50

0-3


25

O13

Clay


50-100

0-3


19

Loam







O14

Loam

50-85


0-3


9

O15

Silt loam

85-100


0-3


53

1 Translation of the Dutch nomenclature by means of FAO textural classes based on the clay, silt and sand fractions (FAO, 1990a).

Source: Wösten et al., 2001.

The unsaturated hydraulic conductivity can also be calculated based on a model developed by Van Genuchten (1980) in which Mualem's model is combined with an empirical S-shaped curve for the soil-water retention function to predict the unsaturated hydraulic conductivity curve. The Van Genuchten model contains six unknowns and can be written as follows:

(4)

where:

Ks = saturated hydraulic conductivity (cm/d);
h = pressure head (cm);
l = dimensionless shape parameter depending on dK/dh (-);
a = shape parameter (cm-1);
n = dimensionless shape parameter (-); and
m = 1-1/n (-).

Wösten et al. (2001) have also published parameters for the different soil types (Table A5.4).

Although water movement in the unsaturated zone is in reality unsteady, calculations can be simplified by assuming steady-state flow during a certain period of time. The steady-state flow equation can be written as:

(5)

Equation 5 can be transformed to:

(6)

Where is the hydraulic conductivity for which is (h1 + h2)/2. With this equation, the soil pressure head profiles for stationary capillary rise fluxes can be calculated. From these pressure head profiles, the contribution of the capillary rise under shallow groundwater table management can be estimated. The following section provides an example to show the calculation procedures to derive at the soil pressure head profiles for a given stationary capillary flux.

Example to calculate the pressure head profiles for a silty soil for stationary capillary rise fluxes

Given is a uniform silty soil with a clay percentage of 10 percent and a low organic matter content (< 3 percent). As in semi-arid climates, the organic matter content is in general low Table A5.2 for subsoils will be used to establish the nomenclature. Table A5.2 shows that this soil can be classified as O8. Six capillary fluxes will be calculated: q = 10 mm/d; q = 7.5 mm/d; q = 5 mm/d; q = 2.5 mm/d; q = 1 mm/d; and q = 0 mm/d.

Table A5.3. Unsaturated hydraulic conductivity K(q) (cm/d) and q (cm3/cm3) in relation to the soil pressure head úhú (cm) and pF for topsoils and subsoils

|h|(cm)

1

10

20

31

50

100

250

500

1000

2500

5000

10000

16000

pF

0.0

1.0

1.3

1.5

1.7

2.0

2.4

2.7

3.0

3.4

3.7

4.0

4.2

Topsoils

B1

K(q)

23.41

11.38

6.04

3.13

1.14

1.6E-1

7.5E-3

6.5E-4

5.4E-4

2.0E-6

1.6E-7

1.4E-8

2.6E-9


q

0.430

0.417

0.391

0.356

0.302

0.210

0.118

0.077

0.053

0.036

0.029

0.025

0.024

B2

K(q)

12.52

3.18

1.57

0.85

0.38

9.2E-2

1.1E-2

2.1E-3

3.8E-4

4.0E-5

7.3E-6

1.3E-6

4.2E-7


q

0.420

0.402

0.377

0.350

0.311

0.248

0.172

0.130

0.098

0.070

0.056

0.045

0.040

B3

K(q)

15.42

6.56

4.05

2.58

1.33

3.5E-1

3.6E-2

5.2E-3

6.9E-4

4.7E-5

6.1E-6

7.9E-7

2.0E-7


q

0.460

0.452

0.439

0.423

0.393

0.329

0.232

0.171

0.125

0.085

0.065

0.051

0.044

B4

K(q)

29.22

8.49

4.86

2.97

1.48

4.0E-1

4.4E-2

7.0E-3

1.0E-3

8.1E-5

1.2E-5

1.7E-6

4.4E-7


q

0.460

0.451

0.438

0.423

0.397

0.345

0.263

0.208

0.163

0.119

0.095

0.077

0.067

B5

K(q)

52.91

17.54

5.97

2.14

0.54

5.6E-2

2.3E-3

2.0E-4

1.8E-5

6.9E-7

6.0E-8

5.2E-9

1.0E-9


q

0.360

0.329

0.272

0.219

0.159

0.094

0.046

0.029

0.020

0.014

0.012

0.011

0.011

B7

K(q)

14.07

1.78

0.93

0.55

0.28

8.3E-2

1.3E-2

2.9E-3

6.0E-4

7.4E-5

1.5E-5

3.1E-6

1.0E-6


q

0.400

0.390

0.379

0.367

0.350

0.315

0.263

0.224

0.190

0.151

0.127

0.107

0.095

B8

K(q)

2.36

0.59

0.38

0.27

0.17

7.0E-2

1.7E-2

4.9E-3

1.4E-3

2.4E-4

6.3E-5

1.7E-5

6.7E-6


q

0.430

0.425

0.419

0.412

0.399

0.370

0.314

0.268

0.225

0.176

0.146

0.122

0.108

B9

K(q)

1.54

0.55

0.39

0.29

0.20

9.5E-2

2.6E-2

8.1E-3

2.3E-3

4.0E-4

1.0E-4

2.7E-5

1.1E-5


q

0.430

0.427

0.423

0.418

0.409

0.385

0.331

0.280

0.229

0.173

0.138

0.111

0.095

B10

K(q)

0.70

0.14

0.10

0.07

0.05

2.4E-2

7.8E-3

2.9E-3

1.0E-3

2.4E-4

8.1E-5

2.7E-5

1.3E-5


q

0.430

0.427

0.424

0.420

0.414

0.398

0.362

0.327

0.289

0.243

0.212

0.185

0.169

B11

K(q)

4.53

0.15

0.08

0.05

0.03

1.2E-2

3.3E-3

1.2E-3

4.0E-4

9.5E-5

3.2E-5

1.1E-5

5.2E-6


q

0.590

0.581

0.573

0.565

0.553

0.529

0.490

0.459

0.428

0.389

0.362

0.336

0.320

B12

K(q)

5.37

0.12

0.06

0.04

0.02

7.7E-3

1.9E-3

6.3E-4

2.0E-4

4.5E-5

1.4E-5

4.6E-6

2.1E-6


q

0.540

0.531

0.523

0.516

0.505

0.485

0.453

0.427

0.402

0.370

0.348

0.327

0.313

B13

K(q)

12.98

5.86

4.13

3.05

1.98

8.4E-1

1.8E-1

4.5E-2

1.0E-2

1.4E-3

3.0E-4

6.4E-5

2.3E-5


q

0.420

0.417

0.411

0.403

0.390

0.354

0.280

0.220

0.168

0.117

0.089

0.068

0.057

B14

K(q)

0.80

0.29

0.21

0.16

0.11

5.0E-2

1.2E-2

2.7E-3

5.4E-4

5.4E-5

9.2E-6

1.5E-6

4.5E-7


q

0.420

0.418

0.415

0.412

0.405

0.388

0.345

0.300

0.253

0.197

0.162

0.133

0.117

Subsoils

O1

K(q)

15.22

11.17

6.88

3.64

1.15

9.6E-2

1.8E-3

7.6E-5

3.2E-6

5.0E-8

2.2E-9

1.2E-9

1.0E-9


q

0.360

0.354

0.332

0.296

0.229

0.124

0.048

0.026

0.016

0.012

0.011

0.010

0.009

O2

K(q)

12.68

7.60

4.38

2.35

0.84

1.0E-1

3.2E-3

2.0E-4

1.2E-5

2.9E-7

1.7E-8

1.1E-9

1.0E-9


q

0.380

0.372

0.351

0.321

0.269

0.179

0.092

0.058

0.040

0.028

0.024

0.022

0.021

O3

K(q)

10.87

5.71

3.48

2.10

0.96

1.9E-1

1.2E-2

1.2E-3

1.1E-4

4.8E-6

4.5E-7

4.2E-8

8.3E-9


q

0.340

0.334

0.321

0.303

0.271

0.206

0.123

0.80

0.053

0.032

0.024

0.018

0.016

O4

K(q)

9.86

3.93

2.34

1.44

0.71

1.7E-1

1.6E-2

2.1E-3

2.7E-4

1.7E-5

2.0E-6

2.4E-7

5.8E-8


q

0.350

0.343

0.332

0.318

0.295

0.244

0.170

0.124

0.090

0.060

0.045

0.034

0.029

O5

K(q)

25.00

10.08

2.43

0.55

0.08

3.2E-3

4.3E-5

1.6E-6

6.0E-8

8.3E-9

4.1E-9

1.2E-9

1.1E-9


q

0.320

0.287

0.212

0.147

0.089

0.042

0.019

0.014

0.011

0.010

0.009

0.008

0.007

O8

K(q)

9.08

2.33

1.39

0.90

0.49

1.6E-1

2.6E-2

5.4E-3

1.1E-3

1.2E-4

2.3E-5

4.3E-6

1.4E-6


q

0.470

0.462

0.451

0.438

0.417

0.372

0.269

0.239

0.191

0.140

0.111

0.088

0.075

O9

K(q)

2.23

0.86

0.58

0.41

0.26

1.0E-1

2.1E-2

5.1E-3

1.1E-3

1.5E-4

3.2E-5

6.7E-6

2.3E-6


q

0.460

0.455

0.448

0.439

0.422

0.382

0.303

0.240

0.185

0.130

0.098

0.075

0.062

O10

K(q)

2.12

0.45

0.29

0.20

0.12

5.0E-2

1.2E-2

3.2E-3

8.4E-4

1.3E-4

3.3E-5

8.1E-6

3.1E-6


q

0.480

0.475

0.469

0.461

0.449

0.419

0.363

0.315

0.269

0.216

0.183

0.155

0.138

O11

K(q)

13.79

0.79

0.41

0.25

0.13

4.2E-2

7.9E-3

2.0E-3

4.8E-4

7.3E-5

1.7E-5

4.0E-6

1.5E-6


q

0.420

0.412

0.404

0.397

0.385

0.362

0.325

0.295

0.267

0.233

0.210

0.189

0.176

O12

K(q)

1.02

0.11

0.07

0.05

0.03

1.3E-2

3.8E-3

1.4E-3

4.6E-4

1.0E-4

3.4E-5

1.1E-5

5.1E-6


q

0.560

0.555

0.550

0.544

0.534

0.512

0.470

0.431

0.392

0.342

0.308

0.278

0.259

O13

K(q)

4.37

0.10

0.05

0.03

0.02

7.6E-3

2.0E-3

6.6E-4

2.2E-4

4.8E-5

1.5E-5

5.0E-6

2.3E-6


q

0.570

0.563

0.556

0.550

0.540

0.521

0.490

0.464

0.439

0.406

0.382

0.360

0.346

O14

K(q)

1.51

1.28

1.15

1.03

0.86

5.6E-1

1.8E-1

4.2E-2

6.3E-3

3.7E-4

4.1E-5

4.3E-6

9.4E-7


q

0.381

0.380

0.379

0.377

0.374

0.362

0.313

0.242

0.167

0.094

0.061

0.041

0.032

O15

K(q)

3.70

1.11

0.74

0.53

0.32

1.3E-1

2.1E-2

4.0E-3

6.3E-4

4.9E-5

6.9E-6

9.5E-7

2.5E-7


q

0.410

0.407

0.403

0.398

0.389

0.367

0.318

0.273

0.229

0.179

0.148

0.122

0.108

Source: Wösten et al., 2001.

Table A5.4. Data set of soil hydraulic functions described with the Van Genuchten model


qres
(cm3/cm3)

qsat
(cm3/cm3)

Ksat
(cm/d)

a
(cm-1)

l
(-)

n
(-)

Topsoils

Sand







B1

0.02

0.43

23.41

0.0234

0.000

1.801

B2

0.02

0.42

12.52

0.0276

-1.060

1.491

B3

0.02

0.46

15.42

0.0144

-0.215

1.534

B4

0.02

0.46

29.22

0.0156

0.000

1.406

B5

0.01

0.36

52.91

0.0452

-0.359

1.933

Silt







B7

0.00

0.40

14.07

0.0194

-0.802

1.250

B8

0.01

0.43

2.36

0.0099

-2.244

1.288

B9

0.00

0.43

1.54

0.0065

-2.161

1.325

Clay







B10

0.01

0.43

0.70

0.0064

-3.884

1.210

B11

0.01

0.59

4.53

0.0195

-5.901

1.109

B12

0.01

0.54

5.37

0.0239

-5.681

1.094

Loam







B13

0.01

0.42

12.98

0.0084

-1.497

1.441

B14

0.01

0.42

0.80

0.0051

0.000

1.305

Subsoils

Sand







O1

0.01

0.36

15.22

0.0224

0.000

2.286

O2

0.02

0.38

12.68

0.0213

0.168

1.951

O3

0.01

0.34

10.87

0.0170

0.000

1.717

O4

0.01

0.35

9.86

0.0155

0.000

1.525

O5

0.01

0.32

25.00

0.0521

0.000

2.374

O6

0.01

0.33

33.92

0.0162

- 1.330

1.311

O7

0.01

0.51

39.10

0.0123

-2.023

1.152

Silt







O8

0.00

0.47

9.08

0.0136

-0.803

1.342

O9

0.00

0.46

2.23

0.0094

-1.382

1.400

O10

0.01

0.48

2.12

0.0097

-1.879

1.257

Clay







O11

0.00

0.42

13.79

0.0191

-1.384

1.152

O12

0.01

0.56

1.02

0.0095

-4.295

1.158

O13

0.01

0.57

4.37

0.0194

-5.955

1.089

Loam







O14

0.01

0.38

1.51

0.0030

-0.292

1.728

O15

0.01

0.41

3.70

0.0071

0.912

1.298

At the water table z = 0 and h = 0. To calculate the pressure head, profiles steps of h = -10 cm will be used. In the first step, h1 = 0, h2 = -10 cm and = -5 cm. The parameters found in Table A5.3 and A5.4 can be used to calculate with the model developed by Van Genuchten (Equation 4). Table A5.3 could also be used to estimate the values of K(q). However, this is less accurate as interpolation between two values of h is required, which is difficult due to the non-linear relation.

For h = -5 cm, K(q) = 3.33 (cm/d)

With Equation 6, the corresponding z2 value for a flux of 1 cm/d (10 mm/d) can be calculated:

TABLE A5.5. Tabulated z-values (cm) for a silty soil for stationary capillary fluxes

h (cm)

(cm)


(cm/d)

z-values (cm)




q = 10 mm/d

q = 7.5 mm/d

q = 5.0 mm/d

q = 2.5 mm/d

q = 1.0 mm/d

q = 0 mm/d

0



0

0

0

0

0

0

-10

-5

3.3

7.7

8.2

8.7

9.3

9.7

10.0

-20

-15

1.8

14.1

15.2

16.5

18.1

19.2

20.0

-30

-25

1.1

19.4

21.2

23.4

26.2

28.4

30.0

-40

-35

0.8

23.8

26.3

29.5

33.8

37.2

40.0

-50

-45

0.6

27.4

30.6

34.8

40.8

45.7

50.0

-60

-55

0.4

30.4

34.2

39.5

47.1

53.8

60.0

-70

-65

0.3

32.9

37.3

43.5

52.8

61.5

70.0

-80

-75

0.3

35.0

39.9

46.9

58.0

68.8

80.0

-90

-85

0.2

36.8

42.2

49.9

62.6

75.6

90.0

-100

-95

0.2

38.3

44.1

52.6

66.7

82.0

100.0

-110

-105

0.1

39.6

45.7

54.8

70.4

88.0

110.0

-120

-115

0.1

40.7

47.1

56.8

73.8

93.5

120.0

-130

-125

0.1

41.6

48.4

58.6

76.8

98.7

130.0

-140

-135

0.1

42.5

49.5

60.1

79.5

103.5

140.0

-150

-145

0.1

43.2

50.4

61.5

81.9

107.9

150.0

-160

-155

0.1

43.9

51.3

62.7

84.1

112.0

160.0

-170

-165

0.1

44.4

52.1

63.8

86.0

115.8

170.0

-180

-175

0.1

45.0

52.7

64.8

87.8

119.4

180.0

-190

-185

0.0

45.4

53.3

65.7

89.5

122.7

190.0

-200

-195

0.0

45.8

53.9

66.5

90.9

125.7

200.0

-210

-205

0.0

46.2

54.4

67.2

92.3

128.5

210.0

-220

-215

0.0

46.6

54.8

67.9

93.5

131.1

220.0

-230

-225

0.0

46.9

55.3

68.5

94.7

133.6

230.0

-240

-235

0.0

47.2

55.6

69.1

95.7

135.8

240.0

-250

-245

0.0

47.4

56.0

69.6

96.7

137.9

250.0

-260

-255

0.0

47.7

56.3

70.0

97.6

139.9

260.0

-270

-265

0.0

47.9

56.6

70.5

98.4

141.7

270.0

-280

-275

0.0

48.1

56.9

70.9

99.2

143.5

280.0

-290

-285

0.0

48.3

57.1

71.2

99.9

145.1

290.0

-300

-295

0.0

48.4

57.3

71.6

100.6

146.6

300.0

-310

-305

0.0

48.6

57.5

71.9

101.2

148.0

310.0

-320

-315

0.0

48.8

57.8

72.2

101.8

149.3

320.0

-330

-325

0.0

48.9

57.9

72.5

102.3

150.6

330.0

-340

-335

0.0

49.0

58.1

72.7

102.8

151.8

340.0

-350

-345

0.0

49.2

58.3

73.0

103.3

152.9

350.0

-360

-355

0.0

49.3

58.4

73.2

103.7

153.9

360.0

-370

-365

0.0

49.4

58.6

73.4

104.2

154.9

370.0

-380

-375

0.0

49.5

58.7

73.6

104.6

155.9

380.0

-390

-385

0.0

49.6

58.8

73.8

104.9

156.8

390.0

-400

-395

0.0

49.7

59.0

74.0

105.3

157.6

400.0

In the second step, h1 = -10, h2 = -20 cm and = -15 cm. For = -15 cm, = 1.76 (cm/d). The corresponding z2 value for a flux of 1 cm/d (10 mm/d) is:

In this manner, all the other values can be calculated (Table A5.5). Figure A5.1 presents the pressure head profiles as calculated.

Figure A5.1. Pressure head profiles for a silty soil for stationary capillary fluxes


Previous Page Top of Page Next Page