Página precedente Indice Página siguiente


Capítulo 5. Malezas de hoja ancha


Chromolaena odorata (L.) R.M. King y Robinson
Convolvulus arvensis L.
Euphorbia heterophylla L.
Lantana camara L.
Mimosa pigra L.
Parthenium hysterophorus L.


Chromolaena odorata (L.) R.M. King y Robinson


Caracterización
Estrategias de manejo
Referencias


R. Muniappan

Caracterización

Chromolaena odorata (sinónimo de Eupatorium odoratum L.) es un arbusto perenne abierto que crece hasta una altura de 5 m cuando cuenta con un soporte (ver Foto 3b). Crece en muchos tipos de suelos, pero prefiere los bien drenados. No tolera la sombra y prospera bien en áreas abiertas. Las plantas se secan después de florecer, en diciembre-enero, en el hemisferio norte, coincidiendo con el período seco, y se convierten en un peligro de incendio. Los tallos secos y acorchados se queman fácilmente, pero las cepas permanecen vivas. Cuando la mayor parte de la vegetación en un área es destruída por el fuego, las cepas de C. odorata brotan inmediatamente después de la primera lluvia y se convierten en la vegetación predominante en el área. C. odorata se desarrolla por estaciones y produce miles de semillas por planta desde enero hasta marzo en el hemisferio norte. Las semillas son dispersadas por el viento. Las ramas de las plantas se abren y a menudo plantas individuales ocupan áreas de hasta 5 m de diámetro.

Distribución/importancia. C. odorata es originaria de América Central y del Sur tropical. Fue introducida en Asia a mediados de los 1800, en Africa en 1937 y en la Micronesia en los años 1960.

Es altamente alelopática (Ambika y Jayachandra 1980) y suprime la vegetación vecina mediante la liberación de productos químicos tóxicos.

C. odorata es un problema en áreas de pastos, bosques alterados, márgenes de carreteras y ríos, áreas abandonadas, cercas, bosques de reserva, plantaciones de café, té, caucho, cacao, palma de aceite, cocotero, y campos de arroz, algodón, caña de azúcar y tabaco.

C. odorata es hospedera de plagas tales como Aphis spiraecola Patch., Brachycaudus helichrysi (Kltb.) y Aphis fabae Scopoli (Joy et al. 1979). Sirve como fuente no nutritiva a la seria plaga Zonocerus sp., en Africa Occidental, mediante el suministro de alcaloides de pirrolizidina y puede estimular un eventual crecimiento de la población (Boppre 1991). Cruttwell McFadyen (1988) ha listado los insectos fitófagos encontrados sobre C. odorata.

Estrategias de manejo

El corte manual, el uso de cortadores de arbustos o aperos de labranza tirados por tractor son métodos de control comunmente usados. El corte produce una rápida regeneración, a menos que sea seguida de otros métodos para suprimir esta maleza durante un período prolongado. El desyerbe manual requiere mucha mano de obra. El uso de equipos de tracción animal está limitado a las áreas que sean accesibles.

Se ha recomendado el uso de cultivos de cobertura, tales como Centrosema pubescens Benth., Pueraria phaseoloides (Roxb.) Benth., Calopogonium mucunoides Desv., Desmodium ovalifolium Guill. & Perr. y Tephrosia purpurea (L.) para prevenir o reducir la incidencia de C. odorata en cultivos de plantación. Se ha informado el uso de la gramínea de pasto Brachiaria decumbens Stapf, en el sur de China, para reducir la infestación de los pastos por C. odorata.

El control químico mediante el uso de herbicidas en estadio de plántulas o al inicio de la emergencia de los retoños ha mostrado resultados prometedores. Triclopyr ha mostrado ser el herbicida más efectivo. Sin embargo, los problemas que conlleva el uso de herbicidas incluyen: (a) el alto costo de los productos químicos y de su aplicación, (b) problemas ecológicos e, (c) incompatibilidad en muchas situaciones de cultivo y del ambiente.

El control biológico es un método prometedor que ha sido impulsado vigorosamente por varias organizaciones en el mundo para enfrentar esta maleza. El enemigo natural de la planta (Pareuchaetes pseudoinsulata Rego Barros) (Lepidóptera: Arctiidae), introducida y establecida en Guam, Rota, Tinian, Saipan y Pohnpei, ha mostrado resultados prometedores en la supresión de esta maleza. Este insecto es criado actualmente en Yap, Beleau, Kosrae, Indonesia, Sudáfrica, Ghana y Costa de Marfil para su establecimiento en los campos. Otros enemigos naturales que actualmente están siendo investigados son Mescinia parvula (Zeller) (Lepidoptera: Pyralidae), Pareuchaetes aurata y P. insulata (Walker) (Lepidoptera: Arctiidae), Actinote anteas Doubleday (Lepidoptera: Acraeidae), Rhodobaenus cariniventris Champ. (Coleoptera: Curculionidae) y los patógenos fungosos Septoria ekmaniana Petrack & Cif. (Deuteromycotina: Coelomycetes) y Cionothrix praelonga Wint. (Arthur) (Basidiomycotina: Uredinales) (Kluge y Caldwell 1991; Ooi et al. 1991).

Referencias

Ambika S.R. y Jayachandra 1980. Suppression of plantation crops by Eupatorium weed. Current Science 49: 874-875.

Boppre M. 1991. A non-nutritional relationship of Zonocerus (Orthoptera) to Chromolaena (Asteraceae) and general implications for weed management. En: R. Muniappan and P. Ferrar (eds). Ecology and Management of Chromolaena odorata, Bogor, Indonesia pp 143-147.

Cruttwell McFadyan R.E. 1988. Phytophagous insects recorded from C. odorata. Chromolaena odorata Newsletter 2: 5-23.

Joy P.J., K.R. Lyla y C.C. Abraham 1979. Preliminary studies on the aphid pests of Eupatorium odoratum Linn. an important weed in plantations of Kerala. Proceedings of the Second Annual Symposium on Plantation Crops. 18: 272-274.

Kluge R.L. y P.M. Caldwell 1991. Chromolaena odorata in South Africa. Chromolaena odorata Newsletter 4: 7.

Ooi P.A.C., A.N.G. Holden y P.S. Baker 1991. Arthropods and pathogens for biological control of Chromolaena odorata. En: R. Muniappan and P. Ferrar (eds), Ecology and Management of Chromolaena odorata, Bogor, Indonesia, pp 118-123.

Convolvulus arvensis L.


Caracterización
Estrategias de manejo
Referencias


P. G. Americanos

Caracterización

Convolvulus arvensis, es una maleza perenne persistente, que se propaga radialmente, produciendo hasta 25 o más tallos en una temporada, muchos de los cuales pueden alcanzar hasta 3 m de longitud, formando un manto denso sobre el suelo. El sistema radical es profundo (ver Foto 3c), extenso y puede profundizar hasta 3 m o más, mientras que las raíces laterales rastreras pueden alcanzar longitudes de hasta 2 m. La planta también forma rizomas subterráneos, que varían en longitud desde pocos centímetros hasta más de un metro.

Las raíces de C. arvensis tienen una alta capacidad regenerativa, sobre todo aquellas dispuestas más profundas, debido a las reservas alimenticias almacenadas en ellas. Es por ésto que aún después de una labranza profunda reaparecen plantas de la maleza sobre la superficie del suelo.

La planta también produce semillas viables, que son una fuente importante de infestación, pero no la única. Las semillas se convierten en viables de 10 a 15 días después de la polinización y pueden permanecer como tal en el suelo durante veinte años o más (Timmons 1949). Ellas pueden germinar en un rango amplio de temperaturas, desde casi la congelación hasta 40 °C. Las plántulas emergen en aproximadamente 10 días y, bajo condiciones favorables, pueden crecer muy rápido, trepandose alrededor de plantas u otro soporte, de manera contraria a las manecillas del reloj. Las raíces de las plántulas segadas tienen buen poder regenerativo. Así, las plántulas segadas 18 días después de la emergencia (DDE) mostraron un 50% de regeneración, mientras que las segadas 34 DDE regeneraron el 100% (Swan 1989).

Los fragmentos de raíces y rizomas también son medios importantes de propagación de la maleza, por lo que las labores de cultivo o labranza que fraccionan y distribuyen estas partes subterráneas, pueden en realidad ayudar a elevar las infestaciones.

Distribución/importancia. C. arvensis se presenta en todos los continentes, por lo que tiene una distribución mundial. Según Holm et al. (1979) ésta es una maleza importante y problemática en muchos países desde partes septentrionales como Inglaterra hasta meridionales como Nueva Zelendia., incluyendo países con climas templados y tropicales. La planta aparece en suelos húmedos y fértiles, pero puede sobrevivir veranos calurosos y secos sobre terrenos en barbecho. También tolera las heladas, pero no la sombra densa. C. arvensis se puede encontrar en campos de diversos cultivos, que incluye las hortalizas, los cereales, viñedos, plantaciones de olivos, los cítricos y puede infestar prácticamente cualquier cultivo.

Su capacidad de crecer rápidamente y su tolerancia a la mayoría de los herbicidas pre-emergentes le permite competir con efectividad con los cultivos, a pesar de su hábito de crecimiento postrado. Aún cultivos con un follaje denso, como la papa, no pueden inhibir con eficacia al C. arvensis, ya que cuando el cultivo ha formado su follaje, la maleza lo ha ya enrollado.

La presencia de C. arvensis causa considerables pérdidas a los cultivos. Una infestacion fuerte puede reducir a la mitad los rendimientos en viñedos (Juliard 1971). Los cultivos de campo y las hortalizas sufren la presencia de esta maleza, que está entre las más peligrosas competidoras del trigo de invierno, la cebada de primavera, la remolacha azucarera y la colza de invierno (Malicki y Berbeciowa 1986). C. arvensis reduce los rendimientos hasta un 50% del tomate para propósito de conserva (Lanini and Miyao 1987).

Además de sus efectos directos de competencia sobre los cultivos, C. arvensis es una especie potencialmente peligrosa en áreas donde se presenta Cuscuta campestris Yunker, ya que es una hospedera favorita de la maleza parasíta indicada. Un aspecto útil de C. arvensis es que resulta ser el alimento preferido de conejos de cria doméstica.

Estrategias de manejo

C. arvensis es muy difícil de controlar, debido a las reservas considerables de su extenso sistema radical y el poder de regeneración a partir de fragmentos de raíces y rizomas. Es más probable que tenga éxito un programa integrado de manejo de la maleza, que un programa basado en un solo método.

El control cultural comienza por el desarrollo de un cultivo vigoroso y bien manejado. Especies de cultivo competitivos, p.ej. alfalfa, también pueden contribuir a reducir las infestaciones de C. arvensis, la cual debe reducir la luz disponible a un 6% o menos de la radiación solar total durante 3 años para ser efectiva. El acolchado que opaque la luz de la superficie del suelo puede controlar C. arvensis, siempre que la maleza no pueda crecer a traves del material de acolchado.

La solarización del suelo consiste en cubrir el suelo mojado con láminas de plástico transparente durante el verano por períodos de seis a ocho semanas. Este método sólo puede ser útil en áreas con veranos calurosos y en campos en barbecho. La solarización del suelo no es muy efectiva contra las plantas de C. arvensis establecidas, pero ha demostrado ser útil para eliminar semillas de la maleza (Elmore y Heefketh 1983).

El control mecánico de C. arvensis puede tener éxito si se mantiene durante un número de años y si las labores son oportunas. Las labranzas habituales incluídas en la preparación del terreno antes de la siembra o plantación de un cultivo, o algunas labores de cultivo para la destrucción de malezas en viñedos y huertos de frutales, son inefectivas para controlar esta especie de maleza y, en realidad, pueden contribuir a su propagación. El control requiere de labranza o labores de cultivo frecuentes, que no deben ser demasiado profundas. Swan (1989) demostró que el mejor momento para cultivar era 12 días después de la emergencia, repetido a intervalos de alrededor de 18 días. En esta opercvaión se debe tener cuidado de no dañar la planta cultivable. La profundidad óptima de la labranza es de 10 cm. Cortes más profundos alargan el intervalo entre labores, pero requieren de mayor potencia. La escarda manual frecuente y poco profunda puede ser tan efectiva como las labores de cultivo o las labranzas.

Los herbicidas pueden jugar un papel significativo en un plan de manejo. Aunque muchos herbicidas pueden controlar C. arvensis existen pocas alternativas de uso selectivo en los cultivos, especialmente en hortalizas. La eficacia está afectada por el estado del tiempo, la humedad del suelo, así como el estadio de desarrollo de la maleza al momento de la aplicación. En la agricultura de bajos insumos, donde se debe lograr el máximo de beneficio del insumo invertido, estos factores adquieren mayor importancia.

En cultivos de cereales, incluyendo el arroz, se pueden aplicar herbicidas poco costosos, tales como 2, 4-D y MCPA, así como dicamba, algo más costoso que los anteriores y repetir su uso inmediatamente después de la cosecha. Estos herbicidas se deben usar con precaución para evitar daños por arrastres o deriva en cultivos susceptibles adyacentes. Donde se use dicamba durante el período de barbecho de verano, no se debe aplicar muy próximo a la siembra de un cereal para evitar el riesgo de daño por acción residual. 2, 4-D y MCPA se pueden aplicar con seguridad en huertos de cítricos, siempre que se garantice que la aspersión no moje el follaje de los árboles. En cultivos bajo irrigación, p.ej. papa, en los que la susceptibilidad a los herbicidas hormonales excluye su uso durante el ciclo de desarrollo del cultivo, se pueden hacer aplicaciones pocas semanas después de la cosecha, cuando el rebrote de C. arvensis esté avanzado, pero antes que el agotamiento de la humedad del suelo cree condiciones de stress que afecten negativamente la acción del herbicida. En tales situaciones varios otros herbicidas se pueden usar que, aunque más costosos, pueden producir un mejor efecto y más persistente sobre la maleza y no son tan dañinos sobre los cultivos adyacentes. Entre ellos el más usado es glifosato, a dosis de hasta 3.6 kg i.a./ha. Una adecuada humedad del suelo y condiciones de temperaturas frescas permiten usar dosis inferiores (Rashed-Mohassel 1982). En climas cálidos la adición de un coadyuvante adecuado, tal como el novedoso fosfolípido de la soya, a 0.5% v/v, permitió una reducción del 25% de la dosis de glifosato, sin pérdida de eficacia (Americanos y Vouzounis 1991). Este herbicida se puede usar en todos los cultivos arbóreos sin ramas bajas, así como en viñedos. Como no es selectivo, se debe aplicar con cuidado para evitar asperjar accidentalmente el follaje, especialmente en viñedos, que se pueden dañar severamente con este herbicida (Barralis et al. 1973, Americanos 1978). En huertos de frutales irrigados C. arvensis ha sido controlada con glifosato en dosis tan bajas como 1.6-2.0 kg e.a./ha (Americanos 1982). Al aplicar glifosato el volumen de aplicación o solución final no debe ser muy alto, de lo contrario se puede reducir la eficacia; 200-3001/ha suele ser lo más adecuado.

Otro herbicida no selectivo que controla C. arvensis, a dosis de 5-10 kg i.a./ha, es aminotriazole, cuya acción es afectada por condiciones adversas de igual forma que es afectado glifosato. El uso de aminotriazole en viñedos y otros cultivos alimenticios ha sido prohibido en algunos países.

El control de C. arvensis con herbicidas pre-emergentes, a dosis toleradas por los cultivos, en pocos casos ha tenido éxito. En viñedos, aplicaciones anuales consecutivas de una mezcla de terbutylazina + terbumeton, cada uno a 3.75 - 5 kg i.a./ha, ha controlado completamente la maleza (Barralis 1973, Americanos 1978, Agulhon et al. 1979). Sin embargo, por razones de seguridad para el cultivo, este tratamiento se debe aplicar fraccionado en dos aplicaciones, dos tercios de la dosis se aplican inicialmente y el restante cuatro a cinco meses después. La misma mezcla, así como terbumeton solo, a 7.5-10 kg i.a./ha han controlado C. arvensis igualmente en cítricos (Americanos 1975).

Existen varios ejemplos de control satisfactorio de C. arvensis con el uso de herbicidas residuales que poseen actividad foliar, los que se aplican en post-emergencia en cultivos establecidos o en terrenos en barbecho. Estos se muestran en la Tabla 1.

Insectos depredadores y parasíticos se han ensayados en pequeña escala con algún éxito, pero el método aún no ha encontrado aplicación práctica.

Tabla 1. Herbicidas para el control o inhibición de C. arvensis

Herbicida

Momento

Cultivos

Acifluorfen-Na

Post

cacahuete, soya

Aminotriazole

Post

cultivos arbóreos, barbecho

Dicamba

Post

cereales, incluyendo arroz

Glifosato

Post

arbóreos, viñedos, barbecho

MCPA

Post

cereales, incluyendo arroz

Methazole

Post

cebolla, huertos deciduos, viñedos, cítricos, olivo

Oxadiazon

Post

acelga trasplantada, cebolla, arroz, huertos deciduos, viñedos, cítricos, olivo

Oxyfluorfen

Post

huertos de árboles deciduos, viñedos, cítricos, olivo

Terbumeton

Pre

cítricos

Terbutylazina + terbumeton

Pre

cítricos, viñedos

2, 4-D

Post

cereales incluyendo arroz

Referencias

Agulhon R., P. Dumartin, Y. Heinzle, E. Meyer y J.P. Rozier 1979. Destruction de plantes vivaces. 10e Conference du Comite Francais de Lutte contre les Mauvaises Herbes (COLUMA) pp 980-988.

Americanos P.G. 1975. New Herbicides for Citrus Orchards. Technical Paper 9, Agricultural Research Institute, Chipre, 14 pp.

Americanos P.G. 1978. Chemical Weed Control in Vineyards. Technical Bulletin 25, Agricultural Research Institute, Chipre, 19 pp.

Americanos P.G. 1982. Chemical Control of Weeds in Deciduous Fruit Trees. Technical Bulletin 44, Agricultural Research Institute, Chipre, 9 pp.

Americanos P.G. y N.A. Vouzounis 1991. The effect of the addition of an organic adjuvant on the effíciency of four systemic herbicides. Míscellaneous Reports 44, Agricultural Research Institute, Chipre, 6 pp.

Barralis G., R. Chadoeuf, G. Riffiod, R. Gagnepain, J. Hamelin, R. Quiclet, R. Boidron, J.P. Couillalt, J.C. Michaut, R. Cuisset y P. Mondovits 1973. Essais de lutte contre le liseron dans les vignes de Bourgogne et Franche-Comte. 7e Conference du Comite Francais de Lutte contre les Mauvaises Herbes (COLUMA) pp 777-786.

Elmore C. y K.A. Heefketh 1983. Soil solarization: an integrated approach to weed control. Proceedings, 35th Annual California Weed Conference pp 143.

Holm L., J.V. Pancho, J.P. Herberger y D.L. Plucknett 1979. A Geographical Atlas of World Weeds. John Wiley & Sons, Nueva York, 391 pp.

Julliard B. 1971. Reflexions apres 15 ans de desherbase chimique et de non culture de la vigne. 6e Conference du Comite Francais de Lutte contre les Mauvaises Herbes. (COLUMA) pp 746-754.

Lanini W.T. y E.M. Miyao 1987. Response of processing tomatoes to different durations of field bindweed competition. Proceedings of the Western Society of Weed Science 40: 148.

Malicki L. y C. Berbeciowa 1986. Uptake of more important mineral components by common field weeds on loess soils. Acta Agrobotanica 39: 129-141.

Rashed-Mohassel M.H. 1982. Chemical control, physiology, anatomy and glyphosate absorption-translocation in field bindweed under stress. Dissertation Abstracts International, B 42: 3041.

Schweitzer K., B. Mullin, D.Wichman y J. Nelson 1988. Survey of weeds in conservation and conventionally tilled grain fields in Montana. Proceedings of the Western Society of Weed Science 41: 133-143.

Swan G.D. 1989. Field bindweed (Convolvulos arvensis L.). Extension Bulletin 1540, Washington State University, 8 pp.

Timmons F.L. 1949. Duration of viability of bindweed seed under field conditions and experimental results in the control of bindweed seedlings. Agronomy Journal 43: 130- 133.

Euphorbia heterophylla L.


Caracterización
Estrategias de manejo
Referencias


J. D. Doll

Caracterización

Euphorbia heterophylla, "lecherito, leche-leche, hierba lechosa", es una planta anual con un latex lechoso en todas sus partes. Crece de 30 a 100 cm de altura y presenta tallos huecos, sencillos o ramificados, con nervaduras angulares. Las hojas tienen formas variables (como lo sugiere el nombre de la especie), tanto dentro como entre las poblaciones (ver Foto 3d). Las hojas inferiores son alternas y las superiores son opuestas y a menudo presentan una base blanquecina o rojo-brillante. Los frutos tiene tres lóbulos y cuando están maduros explotan, dispersando las semillas a 1 m o más desde la planta progenitora.

En áreas tropicales las semillas recién cosechadas no presentan latencia, pero en regiones templadas cálidas sí (Wilson 1981). Esto es una aparente adaptación a esos ambientes, ya que las plantas que empiezan a crecer al final del año en las áreas subtropicales serían destruidas por las temperaturas invernales. Las semillas germinan durante un período prolongado en el campo y las plantas crecen muy rápido y, por lo tanto, son muy competitivas con los cultivos. Pueden cubrir completamente un cultivo de soya o soja dentro de 2 a 3 semanas de la emergencia.

Las plantas pueden florecer ya a 30 días de la emergencia. La polinización se realiza mediante insectos que son atraídos a las flores por las grandes cantidades de nectar producido por glándulas que se encuentran en las mísmas (Heywood 1978). Después de 20 a 25 días se forman semillas maduras. Las plantas individuales pueden tener 100 semillas en un momento dado (Rodriguez y Cepero 1984) y pueden producir más de 4500 semillas durante el ciclo de vida (Celis 1984). Las semillas germinan fácilmente bajo temperaturas alternantes de 25 a 35°C. La emergencia es mayor cuando las semillas están de O a 8 cm de profundidad (40 a 47%) disminuye a 22% a 10 cm, 12% a 12 cm y cero a 14 cm (Cerdeira y Voll 1980). Esta capacidad de emerger desde tales profundidades aumenta la habilidad competitiva y hace más difícil el control de E. heterophylla.

Distribución/importancia. E. heterophylla es originaria de America tropical, pero actualmente se encuentra distribuída en todas las áreas tropicales y subtropicales del mundo. Se pueden encontrar plantas desde el nivel del mar hasta cerca de 1400 m de altitud, pero sólo es una maleza problemática en climas cálidos. Se encuentra en diversos cultivos, en hortalizas, pastos y en terrenos no cultivados, y es particulamnete problemática en soya, caupí, maíz y caña de azúcar. Está considerada una maleza principal o problemática en 10 países y como una maleza común en 37 (Holm et al. 1979). Wilson (1981) comunica que se presenta como una maleza de caupí en Nigeria; de yuca (mandioca) en Ghana; de cítricos, aguacate y mangos en la Florida (EE.UU.); de soya en Nigeria, Brasil y EE.UU.; de cacao, té y arroz de secano en Sumatra; y de algodón en Israel. Esto ilustra su capacidad de crecer y competir en muchos ambientes y sistemas de cultivo.

E. heterophylla infesta más del 25% de los campos de soya de Brasil. Densidades de 75 plantas/m2 redujeron el rendimiento en sólo 12% (Hoffmann et al. 1979). Las pérdidas de rendimiento fueron mucho mayores en EE.UU., donde 8 plantas/m2 compitiendo durante 8 semanas, 12 semanas y el ciclo completo redujeron los rendimientos en 19, 21 y 33%, respectivamente. Cincuenta plantas/m2 a menudo condujeron al fracaso del cultivo (Nestor et al. 1979). Seis semanas sin competencia de E. heterophylla generalmente es adecuado para alcanzar máximos rendimientos de soya (Langston y Harger 1983). Sin embargo, el pegajoso látex en la savia de plantas emergidas tardíamente o de poblaciones no competitivas de la maleza contamina el grano con tierra y paja en la cosecha y eleva su contenido de humedad.

Los rendimientos de una variedad semi-postrada y otra erecta de caupí en Nigeria fueron reducidos en 25 y 53%, respectivamente, cuando 10 plantas/m2 de E. heterophylla competían con el cultivo durante todo el ciclo. Las plantas de la maleza que emergían 20 días o más después de la siembra no tuvieron efecto sobre los rendimientos, pero aquéllas que emergieron con la planta cultivable y no fueron controladas, sombrearon completamente a ésta a las 6 semanas (IITA 1977). Esta es la razón por la que es tan competitiva en la mayoría de los cultivos: su rápido crecimiento inicial le permite formar un follaje sobre éstos, a menos que se controle. Las plantas pueden emerger en todas las épocas. El control de las plantas de emergencia tardía también es importante para prevenir la acumulación de semillas en el suelo.

Estrategias de manejo

Varios herbicidas controlan E. heterophylla, incluyendo 2, 4-D, acifluorfen, fomesafen, oxyfluorfen, bentazon, lactofen, imazethapyr, imazaquin y chlorimuron. Los herbicidas triazínicos, tales como atrazina y metribuzin pueden producir un control aceptable durante varias semanas (especialmente cuando las lluvias son abundantes después de la aplicación), pero raras veces durante todo el ciclo del cultivo (Nestor et al. 1979). Las ureas sustiuídas, tales como linuron y diuron, no tienen efecto alguno sobre esta maleza.

Extensos estudios sobre competencia realizados por malezólogos de la Universidad del Estado de Carolina del Norte (EE.UU.) condujeron al desarrollo de un programa de computación (HERB) que predice los efectos de densidades específicas de E. heterophylla no controlada sobre el rendimiento de soya. Con sólo 5 plantas/9.5 m2 la pérdida de rendimiento pronosticada es de 8% (Medena et al. 1991). El programa entonces calcula el valor de la cosecha perdida y determina los ingresos de varias estrategias de control para los rendimientos y valor de cosecha esperados, basado en los costos del control a los tamaños actuales de la maleza y los niveles de humedad del suelo. Para 5 plantas/9.5 m2, entre 5 y 10 cm de altura, en un campo con buena humedad, tres herbicidas producirían ingresos superiores a los costos.

En la mayoría de los cultivos las medidas de control mecánicas y manuales son efectivas si se realizan oportunamente en varias ocasiones durante una temporada o ciclo de desarrollo. La alteración del suelo crea condiciones favorables para que otras semillas germinen y, como la maleza sólo es ligeramente afectada por la sombra, puede continuar creciendo y compitiendo (Nestor et al. 1979). La integración de las medidas mecánicas, manuales, culturales y el uso de herbicidas en sistemas de manejo bien planeados es el mejor enfoque para el control de E. heterophylla.

Referencias

Celis A. 1984. Potencial de infestacion de malezas en campos cultivados en Peru. 4to Congreso de la Asociacion Latino Americana de Malezas y el 7to. Congreso Brasileiro de Herbicidas e Ervas Daninhas. Belo Horizonte, pp 35-36.

Cerdeira A. y E. Voll 1980. Germination and emergence of Euphorbia heterophylla. In: Resumos XIII Congresso Brasileiro de Herbicidas e Ervas Daninhas, Itabuna. p. 96.

Heywood V. 1978. Flowering Plants of the World. Mayflower Books. Nueva York.

Hoffman C. E. Voll y A. Cerdeira. 1979. Effect of Euphorbia heterophylla competition on soybeans. EMBRAPA Annual Report. Londrina, Brasil, pp 248-250.

Holm L., J. Pancho, J. Herberger y D. Plucknett 1979. A Geographical Atlas of World Weeds. John Wiley & Sons. Nueva York. 391 pp.

IITA. 1977. Annual Report. International Institute of Tropical Agriculture. Ibadan, Nigeria, p 100.

Langston V. y T. Harger 1983. Potential for late season infestation by wild poinsettia. Proceedings Southern Weed Science Society 38: 77.

Medena S., G. Wilkerson y H. Coble 1991. HERB Users Manual. Department of Crop Science, North Carolina State University Research Report 131. Raleigh, North Carolina. 28 pp.

Nestor P., T. Harger y L. McCormick 1979. Weed Watch - Wild poinsettia. Weeds Today. 10: 24-25.

Rodriguez G.S. y G.S. Cepero 1984. Cantidad de semillas producidas por algunas especies de malas hierbas. Centro Agricola 11: 45-50.

Wilson A. 1981. Euphorbia heterophylla: A review of distribution, importance and control. Tropical Pest Management 27: 32-38.

Foto 3b. Chromolaena odorata

Foto 3c. Convolvulus arvensis

Foto 3d. Euphorbia heterophylla

Lantana camara L.


Caracterización
Estrategias de manejo
Referencias


J.T. Swarbrick

Caracterización

Lantana camara, conocida como lantana, es un arbusto muy ramificado, que se presenta de variadas formas desde macollas compactas de 1-2 m de altura hasta enredaderas trepadoras de hasta 8 m de altura. Sus tallos velludos son de sección transversal cuadrada, usualmente con espinas encorvadas. Las hojas son apareadas, de peciolo corto, ovales, con puntas obtusas, márgenes dentados, pelos finos, venas prominentes por el envés y un olor fuerte cuando son aplastadas. Sus pequeñas flores son blancas, rosadas, amarillas, anaranjadas o rojas, con centros amarillos y se presentan en densos racimos entre las hojas. (Foto 4a.). Las frutas verdes y globulares contienen una sola semilla leñosa y al madurar toman coloración negro-purpúrea.

Distribución/importancia. Lantana es una especie artificial desarrollada en Europa como planta ornamental. Sus antecesores se presentan en América tropical, pero las lantanas de hoy no se encuentran en condiciones naturales en esa región (Holm et al. 1977). Lantana se encuentra distribuída muy ampliamente a través de las regiones tropicales, sub-tropicales y las cálidas libres de heladas, al nivel del mar y hasta elevadas altitudes. Tolera sequías estacionales, fuegos, pastoreo y sombra.

Lantana generalmente ha sido introducida deliberadamente como un arbusto ornamental y entonces se ha diseminada rápidamente mediante aves y otros animales que se alimentan de sus frutas, pero no pueden digerir sus semillas leñosas (Chakravarty 1963). Algunas de las variedades ornamentales enanas tienen pocas semillas y son invasoras menos agresivas.

Lantana rápidamente se establece en valiosos terrenos de pastoreo, y prefiere las áreas fértiles, cálidas y húmedas. Crece bien en todos los tipos de suelo, pero prospera mejor en lugares labrados, con suelo arenoso o loam, húmedo, y con poca sombra. Su denso follaje inhibe el crecimiento de las gramíneas y otros forrajes útiles y la planta es relativamente poco apetecible. Muchas variedades de lantana son venenosas al ganado, causando pérdida de apetito, orina frecuente, deshidratación y amarillamiento del interior de la boca y los ojos, al ser alteradas las funciones de los ríñones. El pelo se desprende de la piel, la boca y los ojos se inflaman, y los animales pueden morir en el plazo de una a cuatro semanas. Las frutas también son venenosas para los niños (Holm et al. 1977).

Lantana es un serio problema en la selvicultura y en las operaciones de los huertos de árboles, y también puede aumentar la frecuencia e intensidad de fuegos en períodos secos.

Estrategias de manejo

La quema durante el período seco o el corte manual o mecanizado, seguido de la quema, reduce la vegetación existente, pero a continuación se produce un vigoroso rebrote a partir de las cepas.

La siembras de pastos competitivos (gramíneas altas y leguminosas trepadoras) después del fuego, con cortes repetidos y una reducción del pastoreo hasta que las especies útiles se hagan predominantes, producirá un buen pasto. El pastoreo debe ser controlado para mantener la dominancia de las especies de pasto.

Los arbustos de lantana a menudo se pueden desenraizar mediante arranque, tirando o haciendo uso de una palanca, especialmente en suelos arenosos húmedos. Más difícil resulta desenraizar la planta en suelos secos, arcillosos o pedregosos. Las porciones de tallo que quedan conectadas a raíces, dentro o sobre el suelo, generalmente rebrotarán, mientras que aquellas porciones de raíces sin tallos usualmente mueren.

Lantana puede ser destruída mediante una aspersión minuciosa de herbicida sobre el follaje del rebrote en activo crecimiento, después del corte o la quema, cuando tiene 50-100 cm de altura o cuando las plantas están en floración; sobre las macollas cortadas y desprendidas cerca del nivel del suelo o alrededor de la base de los tallos, cuando la planta está en floración. Es difícil destruírla químicamente en otros momentos, especialmente en condiciones de sequía, stress de frío o sin hojas.

Dentro de los herbicidas más adecuados para tratar cuidadosamente el follaje de la planta en activo crecimiento o para tratar inmediatamente las macollas cortadas se encuentran: glifosato a 0.5 - 1.0%, 2, 4-D amina a 0.5%, triclopyr a 0.2% más picloram a 0.05% e imazapyr a 0.05%, todos disueltos o suspendidos en agua. Los tallos inferiores deben ser mojados todo alrededor con 0.25% de triclopyr éster en petroleo.

Muchos insectos se han evaluado como posibles agentes de control biológico contra lantana (Nakao 1969), pero en general estos han tenido poco éxito.

Los métodos adecuados de control dependen de su factiblidad económica, el área a tratar, la propiedad del terreno, el acceso, y la densidad de lantana. En áreas con poblaciones de arbustos grandes y densos es deseable una reducción inicial mediante la quema o corte. Es importante mantener un pasto vigoroso después de este tratamiento para suprimir las plántulas, competir con los arbustos de lantana, estimular al ganado a pisotearla, y ocasionalmente realizar una quema para suprimir aún más la maleza.

Referencias

Chakravarty S. 1963. Weed Control in India, a review. Indian Agriculturist 7: 23-58. Holm L.G., D.L. Plucknett, J.V. Pancho y J.P. Herberger 1977. Lantana camara L. En The World's Worst Weeds: Distribution and Biology. University Press of Hawaii, pp 299- 302.

Holm L.G., J.V. Pancho, J.P. Herberger y D.L. Plucknett 1979. En A Geographical Atlas of World Weeds. Wiley-Interscience Publications, p 207.

Nakao H. 1969. Biological Control of Weeds in Hawaii. En Proceedings of the First Asian-Pacific Weed Control Interchange, 1967. East-West Center, Honolulu, pp 93-95.

Mimosa pigra L.


Caracterización
Estrategias de manejo
Referencias


W.M. Lonsdale y I.W. Forno

Caracterización

Mimosa pigra es un arbusto leguminoso, de hasta 6 m de altura, (ver Foto 4b.), que se encuentra en lugares húmedos y abiertos en los trópicos. Los tallos están protegidos por espinas de base ancha, de hasta 7 mm de longitud. Las hojas son biplumadas, sensibles al tacto. La producción de semillas por unidad de área foliar puede ser de más de 9000 por m2 por año en una población madura típica, sobre suelo arcilloso negro agrietado de Australia (Lonsdale 1988). La planta individual más productiva en campo en Australia se encontró en el margen de un lago poco profundo, y tenía una copa de alrededor de 8 m2 y produjo alrededor de 220, 000 semillas por año (W.M. Lonsdale, resultados inéditos). En el suelo existe un gran banco de semillas, pero éste está expuesto a una alta mortalidad, tanto de las semillas como de las plántulas (Lonsdale et al. 1988; Lonsdale y Abrecht 1989).

En las llanuras del Río Adelaide, en Australia, el área infestada se duplicó en alrededor de un año (W.M. Lonsdale, resultados no publicados). Sin embargo, la velocidad exacta de incremento está estrechamente relacionada con la lluvia del año precedente.

Una vez que M. pigra ha formado una población típicamente densa, la luz que incide al nivel del suelo generalmente se reduce hasta un 5% de su valor durante el período de crecimiento, y puede decrecer en algunos lugares hasta el 1% (W.M. Lonsdale, resultados inéditos). La vegetación herbácea y las plántulas de árboles no pueden persistir y la maleza forma matorrales prácticamente monoespecíficos.

Distribución/importancia. M. pigra es originaria de América tropical y actualmente está propagada por todos los trópicos, habiéndose destacado en los años de la década de 1970 como una maleza problemática en los suelos húmedos tropicales, la cual ya se encuentra afectando la agricultura en Australia y Tailandia, y parece probable que continuará aumentando más como problema en la región del sudeste asiático. En Australia, se encuentra limitado a las regiones costeras del territorio norteño, mientras que en Tailandia se concentra alrededor de Chiang Mai al norte del país, pero con infestaciones también en la región de Bangkok. En Malasia, un crecimiento excesivo fue comunicado primero por Ooi en 1982 (citado por Mansor 1987) en Shah Alam en el estado de Selangor. Una de las áreas más infestadas en Malasia peninsular es la Isla Penang, donde la mayoría de las áreas recién desbrozadas y los campos de arroz abandonados están intensamente infestados (Mansor 1987). La planta también se encuentra como maleza en Myanmar, Laos, Cambodia, Vietnam, Indonesia, Singapur y Papua Nueva Guinea.

En Australia, los densos matorrales compiten con los pastos e impiden el acceso al agua, y así constituye una amenaza a la ganadería (Miller et al. 1981). La maleza también restringe el acceso de los pescadores y otras personas a las vías acuáticas, presentando un grave problema para la conservación (Braithwaite et al. 1989).

En Tailandia, M. pigra es una maleza problemática, particularmente en los sistemas de irrigación. También constituye un peligro a lo largo de las carreteras e interfiere el acceso a los cables del tendido eléctrico (Napompeth 1983; Harley et al. 1985; Thamasara 1985). Robert (1982) informó que el mayor daño de M. pigra en Tailandia consiste en la acumulación de sedimentos en los sistemas de irrigación y represas. Sin embargo, donde las infestaciones se desarrollan en barbecho de campos de arroz, la recuperación es más costosa, ya que el 75% del costo de la preparación de la tierra infestada es para el control de M. pigra (B. Napompeth, comunicación personal). Niyomyati y Wara-Aswapati (1985) hicieron énfasis que la pérdida del agua disponible para la agricultura en el Valle Chiangmai de Tailandia se debía a la transpiración de grandes infestaciones de M. pigra en la región.

En Australia, M pigra ha sido declarada como "maleza nociva" y ha recibido similar estado legal bajo diversas legislaciones sobre malezas y cuarentena. M. pigra también está sometida al control cuarentenario australiano, estando prohibida su importación bajo el Acta de Cuarentena de la Mancomunidad Británica (Anon. 1981). En Tailandia M. pigra fue declarada maleza nociva en 1983, bajo el Acta de Cuarentena Vegetal (Thamasara 1985). En Malasia fue declarada como una maleza nociva bajo las Regulaciones sobre Plagas Peligrosas y Plantas Nocivas (Importación y Exportación) (Chan et al. 1981).

Estrategias de manejo

Control químico. La mayor parte de la investigación sobre el control químico de esta maleza se ha realizado por I.L. Miller del Departamento del Territorio Norteño de Industrias Primarias y Pesca, Darwin, y fue resumido por Lonsdale et al. (1989) con recomendaciones sobre uso de herbicidas en diferentes situaciones en Australia y Tailandia (Miller y Siriworakul 1992), que incluyen fluroxypyr, hexazinona y tebuthiuron.

Quema. Como existe poca vegetación gramínea debajo de la vegetación densa de M. pigra, es difícil destruír las infestaciones con fuego sin aplicar algún combustible como la gasolina gelatinosa, por vía aérea (Miller y Lonsdale 1992). Un control de seguimiento se debe realizar, pues aunque las semillas sobre el suelo son destruídas, se estimula la germinación de aquéllas almacenadas a una profundidad de 5 cm en el banco de semillas del suelo (Miller 1988; Miller y Lonsdale 1992).

Control biológico. Actualmente existe un programa de colaboración para el control biológico de parte de a agencias Australiana e Internacionales. Debido a su masiva producción de semillas y rápida velocidad de crecimiento se entiende la necesidad de liberar un grupo de bioagentes, cuya acción conjunta sirva para el control de la maleza. Hasta ahora se han liberado seis especies en Australia, después de pruebas rigurosas de especificidad de hospederos, las que aun no han tenido todavía ningún efecto apreciable. Cuatro de éstos agentes también se han liberado en Tailandia. Dentro de los seis bioagentes se encunetran dos escarabajos brúquidos que se alimentan de las semillas, un escarabajo crisomélido que se alimenta del tallo, dos polillas taladradoras del tallo, y a partir de enero de 1992, un picudo que se alimenta de la flor. En los próximos años se espera liberar, entre otras especies, a dos patógenos fungosos (Forno 1992).

Referencias

Anon. 1981. "Summary of Australian Plant and Animal Quarantine Requirements". (Australian Government Publishing Service, Canberra).

Braithwaite R.W., W.M. Lonsdale y J.A. Estbergs 1989. Alien vegetation and native biota in tropical Australia: the spread and impact of Mimosa pigra. Biological Conservation 48: 189-210.

Chan H.H., K.M. Yunos y A.R. Ismail 1981. Status of Mimosa pigra L. in Johore. Malaysian Plant Protection Society Newsletter 5: 5.

Forno I.W. 1992. Research undertaken and prospects for biological control of Mimosa pigra. En: K.L.S. Harley (Ed.) A Guide to the Management of Mimosa pigra. CSIRO Division of Entomology, Canberra, Australia.

Harley K.L.S., I.L. Miller, B. Napompeth y S. Thamasara 1985. An integrated approach to the management of Mimosa pigra L. in Australia and Thailand. Proceedings of the Tenth Conference of the Asian-Pacific Weed Science Society, Chiangmai, Thailand, pp 209-215. Department of Agriculture, Bangkok, Tailandia.

Lonsdale W.M. 1988. Litterfall in an Australian population of Mimosa pigra, an invasive tropical shrub. Journal of Tropical Ecology 4: 381-392.

Lonsdale W.M. y D.G. Abrecht 1989. Seedling mortality in Mimosa pigra, an invasive tropical shrub. Journal of Ecology 77: 371-385.

Lonsdale W.M., K.L.S. Harley y J.D. Gillett 1988. Seed bank dynamics in Mimosa pigra, an invasive tropical shrub. Journal of Applied Ecology 25: 963-976.

Lonsdale W.M., I.L. Miller y I.W. Forno 1989. The Biology of Australian Weeds 20. Mimosa pigra L. Plant Protection Quarterly 4: 119-131.

Mansor M. 1987. The spread of Mimosa pigra L. in Peninsular Malaysia. Weedwatcher, 2/3: 3.

Miller I.L. 1988. Aspects of the Biology and Control of Mimosa pigra L. M.Sc.Agr. Thesis, Faculty of Agriculture, University of Sydney.

Miller I.L. y M. Siriworakul 1992. Herbicide research and recommendations for control of Mimosa pigra. En: I.W. Forno y K.L.S. Harley (Eds.) A Guide to the Management of Mimosa pigra, en imprenta. CSIRO Division of Entomology, Canberra, Australia.

Miller I.L. y W.M. Lonsdale 1992. The use of fire and competitive pastures to control Mimosa pigra. En: I.W. Forno y K.L.S. Harley (Eds.) A Guide to the Management of Mimosa pigra, en imprenta. CSIRO Division of Entomology, Canberra, Australia.

Napompeth B. 1983. Background, threat and distribution of Mimosa pigra L. in Thailand. Proceedings of an International Symposium on Mimosa pigra Management, Chiangmai, Tailandia, International Plant Protection Center, Corvallis. pp 15-26.

Niyomyati O. y O. Wara-Aswapati 1985. Transpiration rate of Mimosa pigra L. shoots in different seasons. Proceedings of the Tenth Conference of the Asian-Pacific Weed Science Society, Chiangmai, Tailandia, Department of Agriculture, Bangkok, pp 491- 496.

Robert G.L. 1982. Economic Returns to Investment in Control of Mimosa pigra in Thailand. Document No. 42-A-82, International Plant Protection Center, Corvallis.

Thamasara S. 1985. Mimosa pigra L. Proceedings of the Tenth Conference of the Asian-Pacific Weed Science Society, Chiangmai, Tailandia, Department of Agriculture, Bangkok, pp 7-12.

Foto 4a. Lantana camara

Foto 4b. Mimosa pigra

Parthenium hysterophorus L.


Caracterización
Estrategias de control
Referencias


R. Labrada

Caracterización

Parthenium hysterophorus (Fotos 4c., 4d.), conocida como "amargosa, escoba amarga, artemisa o manzanilla", es una planta erecta anual con hojas alternas, profundamente disecadas, que crece hasta 2 m de altura con inflorescencias ramificadas que portan cabezuelas florales blancas y aquenios negros, obovoides y suaves.

Las semillas de la escoba amarga no germinan inmediatamente después de la maduración, ya que los aquenios antes necesitan dispersarse y liberar algunos inhibidores de la germinación (Picman y Picman 1984; Kohli et al. 1985; Kumari y Kohli 1987). Su germinación alcanza su máximo en un período de 1-6 meses después de la maduración de los aquenios. Las semillas no son capaces de germinar de estar ubicadas por debajo de los primeros 5 cm del suelo. En el Caribe, esta maleza florece a los 30-45 días después de la germinación y el ciclo completo de la planta se alcanza en alrededor de 5 meses, con una producción promedio de 810 cabezuelas florales por planta (Labrada 1988). Un fotoperíodo de 13 horas y condiciones cálidas promueven la floración de la planta (Williams y Groves 1980).

Distribución/importancia. La escoba amarga es nativa de América tropical y fue introducida en Africa, Asia y Oceanía en cargamentos de cereales y semillas de pastos provenientes de los EE.UU. durante la década de los 1950.

La escoba amarga está ampliamente diseminada en pastos, huertos de árboles frutales y áreas cultivables sobre suelos neutros y ácidos. En India, la maleza es considerada un problema grave (Gupta y Sharma 1977; Shelke 1984); en América Central y el Caribe, la escoba amarga aparece principalmente en áreas repetidamente tratadas con paraquat o con ciertos herbicidas activos en el suelo y utilizados selectivamente en hortalizas y leguminosas, tales como trifluralin, difenamida y otros (Labrada 1990).

El potencial alelopático de la escoba amarga se debe a la liberación de sustancias fitotóxicas, tales como los ácidos ferúlico, caféico, vanílico, clorogénico, p-cumárico y p-hidroxibenzoico, partenina, ambrosina y coronopilina, los que inhiben la germinación y el crecimiento de algunas plantas cultivables y árboles de multi-propósito (Basak 1984; Jarvis et al. 1985; Dharmaraj y Ali 1985; Srivastava et al. 1985; Dayama 1986; Swaminathan et al. 1990). La maleza, al entrar en contacto con la piel del agricultor o de algún animal doméstico, también causa dermatitis alérgica y problemas respiratorios (Auld y Medd 1987).

La escoba amarga es también hospedera de varias plagas y enfermedades dañinas a varios cultivos. La infección recíproca de Xanthomonas campestris pv. phaseoli entre la escoba amarga y plantas de frijol ha sido determinada. La infección tuvo lugar con plantas de frijol que se infectaron durante el período de pre-floración y la formación de la vaina (Ovies y Larrinaga 1988).

Foto 4c. Plántula de Parthenium hysterophorus

Foto 4d. Parthenium hysterophorus en floración

Estrategias de control

En áreas cultivables infestadas, la arada profunda durante el proceso de preparación del terreno puede reducir la población de la escoba amarga. En áreas pequeñas de cultivo, la escarda manual durante los estadios tempranos de crecimiento previene la floración. La escarda de plantas ya maduras es inefectivo debido a que la planta puede regenerar a partir de sus yemas de la corona de la planta (Gupta y Sharma 1977).

En India, en áreas muy infestadas, la escoba amarga se ha logrado eliminar a través del uso de plantas de Cassia spp. (Joshi 1991). Esta práctica consiste en el desyerbe manual de la maleza y siembra inmediata de las semillas de Cassia (C. sericea o C. uniflora Mill.), cuya población se elevó notablemente sobre la de escoba amarga al decursar el tiempo. Dos años después la relación Cassia: Parthenium fue mayor a 21:1 (Mahadevappa y Ramaiah 1990).

El control biológico de la escoba amarga ya se practica en Australia mediante el uso de la polilla perforadora del tallo, Epiblema strenuana (Lepidoptera: Tortricidae). El insecto posee un nivel de reproducción relativamente alto en cortos períodos de tiempo y su efectividad ha sido comprobada en las alturas centrales de Queensland (McFadyen 1985). Hay también otros agentes biológicos con potencial para el control de la escoba amarga, tales como el crisomélido, Zygogramma bicolorata (Coleoptera: Chrysomelidae) y el picudo taladrador del tallo Listronotus setosípennis (Coleoptera: Curculionidae). Todos estos organismos son originarios del Brasil y México, por lo que requieren evaluación previa en los países afectados por la escoba amarga.

Otro desarrollo, en proceso, en materia de control biológico de la escoba amarga es el uso de un hongo causante de la roya Puccinia abrupta var. partheniicola. Suspensiones de uredosporas de pústulas de 3 semanas de edad se han aplicado sobre el follaje de la escoba amarga, obteniéndose efectividad consistente (Parker 1989). Este hongo está siendo ahora evaluado para el desarrollo de un micoherbicida.

La escoba amarga no es eliminada por algunos conocidos herbicidas, tales como paraquat (Njoroge 1991), trifluralin, difenamida, napropamida y las acetanilidas, alachlor, metolachlor y propachlor (Labrada 1990). Este autor ha observado que en plantaciones de cítricos, café y bananos tratadas repetidamente con paraquat, la escoba amarga se ha convertido en la maleza predominante en el período de un año. Infestaciones similares han tenido lugar en campos de hortalizas y leguminosas tratadas por varios años con trifluralin. Esta incidencia de aparente resistencia de la escoba amarga a los herbicidas indica la necesidad de utilizar mezclas o secuencias de herbicidas contra la maleza.

Existen algunos tratamientos selectivos de herbicidas efectivos para el control de la escoba amarga (Tabla 1). Su aplicación en áreas de pequeños agricultores dependerá de varios factores socio-económicos de los lugares afectados.

En algunas situaciones es más útil determinar el umbral económico de la escoba amarga en las áreas de cultivo afectadas, lo cual ayuda a decidir si aplicar o no un tratamiento químico costoso. Este valor de umbral ha sido establecido para varios cultivos (Tabla 2). Si la escoba amarga no es combatida a las densidades indicadas y período de desarrollo de la planta cultivable, sin lugar a dudas, ocurrirán pérdidas de rendimientos y se incrementará el banco de semillas de la maleza en el suelo.

Tabla 1. Herbicidas para el control de Parthenium hysterophorus*

Herbicida

kg i.a./ha

Tratamiento

Cultivo

Ametrina

1.6-2.4

Post

Bananos, plátanos, café, cítricos y piña.

Ametrina + simazina

1.6-2.4 (de cada)

Pre o post

Idem.

Atrazina

2.4-3.2

Pre

Maíz y sorgo

Prometrina

1.0-1.5

Pre

Ajo y papa

2, 4-D

1.0-1.5

Post

Maíz, sorgo y pastos.

Metribuzin

0.2-0.35

Pre

Siembras directas y trasplante de tomate, papa.

Fomesafen

0.25

Post

Frijol, soya.

Linuron

0.75-1.0

Pre

Frijol, soya y ajo.

Metobromuron

0.75-1.0

Pre

Frijol, soya y papa.

Oxadiazon

0.25-0.38

Post

Cebolla.

Tabla 2 Umbral económico de Parthenium hysterophorus en diferentes cultivos*

Cultivo

Umbral de Parthenium (plantas/m2)

Período del cultivo (días después de la emergencia o trasplante)

Frijol

1

30

Soya

4

15-30

Tomate (siembras)

1

20

Pimiento (trasplante)

1-2

60

Cebolla (trasplante)

2

20

Ajo

1

15

*De acuerdo a Labrada y Morales (1986); Paredes y Labrada (1986); Paredes et al. (1990).

Referencias

Auld B.A. y R.W. Medd 1987. Weeds, an illustrated botanical guide to the weeds of Australia. Inkata Press, Melbourne-Sydney 255 pp.

Basak S.L. 1984. Parthenium - a big threat to agriculture and health in 1980s. Indian Agriculturist 28: 137-143.

Dayama O.P. 1986. Allelopathic potential oí Parthenium hysterophorus L. on the growth, nodulation and nitrogen content of Leucaena leucocephala. Leucaena Research Reports 7: 36-37.

Dharmaraj G. y A.M. Ali 1985. Allelopathic potential of parthenium (Parthenium hysterophorus L.) extracts. Abstracts Annual Conference Indian Society Weed Science, Tamil Nadu Agricultural University p 46.

Gupta O.P. y J.J. Sharma 1977. El peligro del partenium en la India y posibles medidas de control del mismo. Boletin Fitosanitario FAO 25: 112-117.

Jarvis B.B., N.B. Pena, M.M. Rao, R.S. Comezoglu, T.F. Comezoglu y N.B. Mandava 1985. Allelopathic agents for Parthenium hysterophorus and Baccharis megapotamica. In "The Chemistry of Allelopathy, biochemical interactions among the plants", American Chemical Society, pp 149-159.

Joshi S. 1991. Biological control oí Parthenium hysterophorus L. (Asteraceae) by Cassia uniflora Mill. (Leguminosae), in Banglore, India. Tropical Pest Management 37: 182- 184.

Kohli R.K., Anita Kumari y D.D. Saxena 1985. Auto and teletoxicity of Parthenium hysterophorus L. Acta Universitatis Agriculturae, Brno, A (Fac. Agronomy) 33: 253-263.

Kumari A. y R.K. Kohli 1987. Autotoxicity of ragweed parthenium (Parthenium hysterophorus). Weed Science 35: 629-632.

Labrada R. 1988. Complemento al estudio biológico de Parthenium hysterophorus L. Resumenes IX Congreso ALAM, julio 26-30, Maracaibo, Venezuela.

Labrada R. 1990. El manejo de malezas en áreas de hortalizas y frijol en Cuba. X Congreso ALAM, La Habana, abril 1-14, vol. 11: 1-16.

Labrada R. y R. Morales 1986. Umbral económico de Parthenium hystrophorus L. en frijol y soya. Resumenes VIII Congreso ALAM, Guadalajara, p 88.

Mahadevappa M. y H. Ramaiah 1990. Pattern of replacement of Parthenium hysterophorus plants by Cassia sericea in waste lands. Indian Journal of Weed Science 20: 83-85.

McFadyen R.E. 1985. The biological control programme against Parthenium hysterophorus in Queensland. Proceeding VI Symposium Biological Control Weeds (19- 25 august, 1984), Vancouver pp 789-796.

Njoroge J.M. 1991. Tolerance of Bidens pilosa L. and Parthenium hysterophorus L. to paraquat (Gramoxone) in Kenya. Kenya Coffee 56: 999-1001.

Ovies J. y Loretta Larrinaga 1988. Transmisión de Xanthomonas campestris pv. phaseoli mediante un hospedante silvestre. Ciencia y Técnica Agricultura, Protección Plantas 11: 23-30.

Paredes E. y R. Labrada 1986. Umbral de daños de Parthenium hysterophorus en plantación de pimiento y siembra directa de tomate. Resumenes VIII Congreso ALAM, Guadalajara, p 37.

Paredes E., E. Perez, F. La O y A. Suey 1990. Umbrales de daño económico de Parthenium hysterophorus L. en ajo (Allium sativus L.) y cebolla (Allium cepa L.). Resumenes X Congreso ALAM, La Habana, vol 1: 78.

Parker H. 1989. Biological control of Parthenium hysterophorus using two rust fungi. Proceedings VII Symposium Biological Control Weeds, Rome pp 531-538.

Picman J. y A.K. Picman 1984. Autotoxicity in Parthenium hysterophorus and its possible role in control of germination. Biochemical Systematics and Ecology 12: 287-292.

Shelke D.K. 1984. Parthenium and its control - a review. Pesticides 18: 51-54. Srivastava J.N., J.P. Shukla y R.C.

Srivastava 1985. Effect of Parthenium hysterophorus L. extract on the seed germination and seedling growth of barley, pea and wheat. Acta Botanica Indica 13: 194-197.

Swaminathan C., R.S. Rai y K.K. Smesh 1990. Allelopathic effects of Parthenium hysterophorus on germination and growth of a few multi-purpose trees and arable crops. International Tree Crops Journal 6: 143-150.

Williams J.D. y R.H. Groves 1980. The influence of temperature and photoperiod on growth and development of Parthenium hysterophorus L. Weed Research 20: 47-52.


Página precedente Inicìo de página Página siguiente