Thumbnail Image

Forest land emissions and removals

Global, regional and country trends, 1990–2020












Also available in:
No results found.

Related items

Showing items related by metadata.

  • Thumbnail Image
    Article
    Carbon emissions and removals from forests: new estimates, 1990–2020 2021
    Also available in:
    No results found.

    National, regional and global CO2 emissions and removals from forests were estimated for the period 1990–2020 using as input the country reports of the Global Forest Resources Assessment 2020. The new Food and Agriculture Organization of the United Nations (FAO) estimates, based on a simple carbon stock change approach, update published information on net emissions and removals from forests in relation to (a) net forest conversion and (b) forest land. Results show a significant reduction in global emissions from net forest conversion over the study period, from a mean of 4.3 in 1991–2000 to 2.9 Gt CO2 yr−1 in 2016–2020. At the same time, forest land was a significant carbon sink globally but decreased in strength over the study period, from −3.5 to −2.6 Gt CO2 yr−1. Combining net forest conversion with forest land, our estimates indicated that globally forests were a small net source of CO2 to the atmosphere on average during 1990–2020, with mean net emissions of 0.4 Gt CO2 yr−1. The exception was the brief period 2011–2015, when forest land removals counterbalanced emissions from net forest conversion, resulting in a global net sink of −0.7 Gt CO2 yr−1. Importantly, the new estimates allow for the first time in the literature the characterization of forest emissions and removals for the decade just concluded, 2011–2020, showing that in this period the net contribution of forests to the atmosphere was very small, i.e., a sink of less than −0.2 Gt CO2 yr−1 – an estimate not yet reported in the literature. This near-zero balance was nonetheless the result of large global fluxes of opposite sign, namely net forest conversion emissions of 3.1 Gt CO2 yr−1 counterbalanced by net removals on forest land of −3.3 Gt CO2 yr−1. Finally, we compared our estimates with data independently reported by countries to the United Nations Framework on Climate Change, indicating close agreement between FAO and country emissions and removals estimates. Data from this study are openly available via the Zenodo portal (Tubiello, 2020), with DOI https://doi.org/10.5281/zenodo.3941973, as well as in the FAOSTAT (Food and Agriculture Organization Corporate Statistical Database) emissions database (FAO, 2021a).
  • Thumbnail Image
    Book (stand-alone)
    Agriculture, forestry and other land use emissions by sources and removals by sinks
    1990-2011 Analysis
    2014
    Also available in:

    This report discusses new knowledge on anthropogenic greenhouse gas (GHG) emissions from agriculture, forestry and other land use (AFOLU) activities made available through the new FAOSTAT Emission database. The database is available globally, with country detail, for all agriculture, forestry and land sub-categories available in FAOSTAT and in the Forest Resources Assessment (FRA). GHG emissions are computed from official national activity data and geo-spatial analyses, applying international st andard methodologies of the Intergovernmental Panel on Climate Change (IPCC) to ensure consistency with GHG Inventory processes established under the climate convention. The analysis shows increases in emissions of agriculture (from 4.6 to 5.0 Gt CO2 eq yr-1 in 1990s and 2000s; 5.3 Gt CO2 eq yr-1 in 2011), decreases in deforestation rates (from 4.6 to 3.8 Gt CO2 eq yr-1 in 1990s and 2000s; 3.7 Gt CO2 eq yr-1 in 2010), and decreases in forest sinks, albeit with a reversal since the mid-2000s (f rom -2,9 to -1.9 Gt CO2 eq yr-1 in 1990s and 2000s values; -2.1 Gt CO2 eq yr-1 in 2010). At the same time, the data show that GHG intensity of products (i.e., GHG emissions per unit commodity produced) decreased during 1990-2010, but that if no further mitigation measures and technical efficiency improvements are implemented, future emissions may further increase by up to 30% by 2050. Better information on AFOLU emissions is critical in many developing countries, given the potential to identif y and fund actions that can usefully bridge national food security, resilience, mitigation and development goals into one coherent package.
  • Thumbnail Image
    Article
    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018 2021
    Also available in:
    No results found.

    Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990–2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011–2015, the CO2 land sources and sinks from NGHGI estimates report −90 Tg C yr−1 ±  30 Tg C yr−1 while all other BU approaches report a mean sink of −98 Tg C yr−1 (± 362 Tg of C from dynamic global vegetation models only).

Users also downloaded

Showing related downloaded files

No results found.