English || Español
    AQUASTAT Accueil      À propos d'AQUASTAT   FAO Eau     Les statistiques à la FAO

Produits phares

Base de Données Principale
Barrages
Carte mondiale des superficies d'irrigation
L'eau pour l'irrigation
L'eau et le genre
Outil d'info climatique
Institutions

Entités géographiques

Pays, régions, bassins fluviaux

Thèmes

Ressources en eau
Usages de l'eau
Irrigation et drainage
Eaux usées
Cadre institutionnel
Autres thèmes

Type d'information

Ensembles de données
Publications
Tableaux récapitulatifs
Cartes et données spatiales
Glossaire

Info pour les médias

Le saviez-vous...?
Visualisations et infographies
ODD Cible 6.4
KWIP
UNW Synthèses
     

Lire le profil complet

Israël

Water resources

The only river in Israel is the Jordan. The main sources of fresh water in Israel include:

  • Lake Kinneret or Lake Tiberias (the Sea of Galilee), which divides the upper and lower portions of the Jordan River system, is the only natural freshwater lake in Israel. It has traditionally provided about a third of the country’s domestic, agricultural and industrial water requirements. Lake Tiberias’ catchment area is 2 730 km2 and the surface area of the lake is 165 km2 with an estimated storage volume of 710 million m3. Lake Tiberias is the lowest freshwater lake in the world. The total average annual inflow of water into Lake Tiberias amounts to 1 km3, of which some 250 million m3 serve consumers in the region, about 450 million m3 are withdrawn from the lake to serve consumers throughout the country by means of the National Water Carrier and about 300 million m3 are lost by evaporation. The water level has been traditionally regulated between 209 m and 213 m below sea level.
  • The Coastal Aquifer is a sandstone aquifer which extends along 120 kilometres of the Mediterranean coastline. It is naturally recharged by precipitation and artificially recharged by water from the National Water Carrier, effluents and excess irrigation water percolating from agricultural, industrial and domestic land uses as well as from streams and wadis. The aquifer is also a valuable storage basin since sandstone layers hold water efficiently. It has a mean annual recharge of 250 million m3 in addition to 50 million m3 of agricultural drainage water.
  • The Mountain Aquifer (Yarkon-Taninim) is a limestone aquifer which underlies the foothills in the centre of the country. The basin is comprised of three subaquifers: the Western Basin, known as the Yarkon Taninim Aquifer, flows north and westward and discharges in the Taninim Springs on the Mediterranean coast while the Northeastern and Eastern Basins discharge in the Beit Shean Springs and the Jordan Rift Valley and Dead Sea. The Yarkon Taninim Aquifer is regenerated by precipitation with average annual renewable recharges of about 350 million m3.
  • Relatively smaller aquifers are located in Western Galilee, Eastern Galilee, the Jordan Rift, and the Arava valley.

Total internal renewable water resources are estimated at 750 million m3/year (Table 3). About 250 million m3 is surface water and 500 million m3 groundwater and the overlap between surface water and groundwater is considered to be negligible. Surface water entering the country is estimated at 305 million m3/year, of which 160 million m3 from Lebanon (including 138 million m3 from Hasbani), 125 million m3 from the Syrian Arab Republic, and 20 million m3 from the West Bank. Groundwater entering the country is estimated at 725 million m3/year, of which 325 million m3 from the West Bank, 250 million m3 from the Syrian Arab Republic (Dan Springs) and 150 million m3 from Lebanon (Lake Hulah). The total renewable water resources are thus 1 780 million m3/year, of which 92 percent is considered to be exploitable. About 25 million m3/year of groundwater flow from the country to the Gaza Strip.


Mekorot, Israel’s national water supply company, has built and operated small- and medium-size desalination facilities in the southern part of the country since the 1960s. Eilat at the southern tip of the country by the Red Sea was the first city to use desalination. Some 29 small plants generate 25 million cubic meters of water per year, mainly from brackish water. A decision to desalinate on a larger scale was taken in 2000 as a result of Israel’s growing water scarcity. The national goal is to produce 750 million m3/year of desalinated water in 2020 (MAE, 2005). In the near future a string of desalination plants along the Mediterranean coast will produce 400 million cubic meters per year. One large plant for the desalination of seawater was recently completed on the Mediterranean coast, and is now producing 115 million cubic meters a year of potable water (MITL, 2008). Using the reverse osmosis process, this plant is generating water for about 60 cents per cubic meter. All tenders issued for desalination facilities stipulate stringent threshold levels for water quality and provide incentives for even higher water qualities, especially in terms of chloride levels, in order to allow for irrigation without the attendant problem of soil salinity. In 2002, the total installed gross desalination capacity (design capacity) in Israel was 439 878 m3/day or 160.6 million m3/year (Wangnick Consulting, 2002).

Out of a total of 450 million m3 of sewage produced in Israel, about 96 percent is collected in central sewage systems and 64 percent of the effluents are reclaimed (290 million m3); 283 million m3 are adequately treated. Local authorities are responsible for the treatment of municipal sewage. In recent years new or upgraded intensive treatment plants have been set up in municipalities throughout the country. The ultimate objective is to treat 100 percent of Israel's wastewater to a level enabling unrestricted irrigation in accordance with soil sensitivity and without risk to soil and water sources (MOE, 2005).

     
   
   
             

^ haut de page ^

   Citer comme suit: FAO. 2016. Site web AQUASTAT. Organisation des Nations Unies pour l'alimentation et l'agriculture. Site consulté le [aaaa/mm/jj].
  © FAO, 2016Questions ou commentaires?    aquastat@fao.org
   Votre accès à AQUASTAT et l’utilisation de toute information ou donnée est soumis aux termes et conditions spécifiés dans le User Agreement.