UN Enviroment Programme

Chapter 5. Global status of soil pollution

References

Abakumov, E.V., Tomashunas, V.M., Lodygin, E.D., Gabov, D.N., Sokolov, V.T., Krylenkov, V.A. & Kirtsideli, I. Yu. 2015. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic. Eurasian Soil Science, 48(12): 1300–1305. https://doi.org/10.1134/S1064229315120029

Adedeji, O.H., Olayinka, O.O. & Tope-Ajayi, O.O. 2019. Spatial Distribution and Health Risk Assessment of Soil Pollution by Heavy Metals in Ijebu-Ode, Nigeria. Journal of Health & Pollution, 9(22). https://doi.org/10.5696/2156-9614-9.22.190601

Aichele, R. & Felbermayr, G. 2013. The Effect of the Kyoto Protocol on Carbon Emissions: Kyoto and Carbon Emissions. Journal of Policy Analysis and Management, 32(4): 731–757. https://doi.org/10.1002/pam.21720

Aichner, B., Bussian, B., Lehnik-Habrink, P. & Hein, S. 2013. Levels and spatial distribution of persistent organic pollutants in the environment: A case study of German forest soils. Environmental Science and Technology, 47(22). https://doi.org/10.1021/es4019833

Aichner, B., Bussian, B.M., Lehnik-Habrink, P. & Hein, S. 2015. Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils. Environmental Pollution, 203: 31–39. https://doi.org/10.1016/j.envpol.2015.03.026

Akanyange, S.N., Lyu, X., Zhao, X., Li, X., Zhang, Y., Crittenden, J.C., Anning, C., Chen, T., Jiang, T. & Zhao, H. 2021. Does microplastic really represent a threat? A review of the atmospheric contamination sources and potential impacts. Science of The Total Environment, 777: 146020. https://doi.org/10.1016/j.scitotenv.2021.146020

Alloway, B.J., ed. 2013. Heavy Metals in Soils. Environmental Pollution. Dordrecht, Springer Netherlands. (also available at http://link.springer.com/10.1007/978-94-007-4470-7).

Ander, E.L., Johnson, C.C., Cave, M.R., Palumbo-Roe, B., Nathanail, C.P. & Lark, R.M. 2013. Methodology for the determination of normal background concentrations of contaminants in English soil. Science of The Total Environment, 454–455: 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005

Aoyama, M., Hirose, K. & Igarashi, Y. 2006. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. Journal of Environmental Monitoring, 8(4): 431–438. https://doi.org/10.1039/B512601K

Backhaus, T. & Faust, M. 2012. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environmental Science & Technology, 46(5): 2564–2573. https://doi.org/10.1021/es2034125

Balmer, J.E., Morris, A.D., Hung, H., Jantunen, L., Vorkamp, K., Rigét, F., Evans, M., Houde, M. & Muir, D.C.G. 2019. Levels and trends of current-use pesticides (CUPs) in the arctic: An updated review, 2010–2018. Emerging Contaminants, 5: 70–88. https://doi.org/10.1016/j.emcon.2019.02.002

Bancone, C.E.P., Turner, S.D., Ivar do Sul, J.A. & Rose, N.L. 2020. The Paleoecology of Microplastic Contamination. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.574008

Bandowe, B.A.M., Bigalke, M., Kobza, J. & Wilcke, W. 2018. Sources and fate of polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes) in forest soil profiles opposite of an aluminium plant. Science of The Total Environment, 630: 83–95. https://doi.org/10.1016/j.scitotenv.2018.02.109

Barrán-Berdón, A.L., González, V.G., Aboytes, G.P., Rodea-Palomares, I., Carrillo-Chávez, A., Gómez-Ruiz, H. & Cuéllar, B.V. 2012. Polycyclic aromatic hydrocarbons in soils from a brick manufacturing location in central Mexico. Revista Internacional de Contaminacion Ambiental, 28(4): 277–288.

Basel Convention. 2011. Basel Convention > The Convention > Overview [online]. [Cited 26 December 2019]. http://www.basel.int/TheConvention/Overview/tabid/1271/Default.aspx

Basel Convention. 2020. Basel Protocol on Liability and Compensation for Damage Resulting from Transboundary Movements of Hazardous Wastes and their Disposal [online]. [Cited 8 June 2020]. http://www.basel.int/Countries/StatusofRatifications/TheProtocol/tabid/1345/Default.aspx

Basel Convention. 2021. Parties to the Basel Convention [online]. [Cited 26 January 2020]. http://www.basel.int/Countries/StatusofRatifications/PartiesSignatories/tabid/4499/Default.aspx

Belkhir, L. & Elmeligi, A. 2018. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. Journal of Cleaner Production, 177: 448–463. https://doi.org/10.1016/j.jclepro.2017.12.239

Bennett, B.G. 2002. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests. Health Physics, 82(5): 644–655. https://doi.org/10.1097/00004032-200205000-00011

Van Den Berg, H., Manuweera, G. & Konradsen, F. 2017. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malaria Journal, 16(1): 1–8. https://doi.org/10.1186/s12936-017-2050-2

Bhardwaj, L., Chauhan, A., Ranjan, A. & Jindal, T. 2018. Persistent Organic Pollutants in Biotic and Abiotic Components of Antarctic Pristine Environment. Earth Systems and Environment, 2(1): 35–54. https://doi.org/10.1007/s41748-017-0032-8

Birnbaum, L.S. 2008. The effect of environmental chemicals on human health. Fertility and Sterility, 89(2): e31. https://doi.org/10.1016/j.fertnstert.2007.12.022

Braune, B.M., Gaston, A.J. & Mallory, M.L. 2019. Temporal trends of legacy organochlorines in eggs of Canadian Arctic seabirds monitored over four decades. Science of The Total Environment, 646: 551–563. https://doi.org/10.1016/j.scitotenv.2018.07.291

Breivik, K., Alcock, R., Li, Y.-F., Bailey, R.E., Fiedler, H. & Pacyna, J.M. 2004. Primary sources of selected POPs: regional and global scale emission inventories. Environmental Pollution, 128(1–2): 3–16. https://doi.org/10.1016/J.ENVPOL.2003.08.031

Breivik, K., Sweetman, A., Pacyna, J.M. & Jones, K.C. 2002a. Towards a global historical emission inventory for selected PCB congeners - A mass balance approach: 1. Global production and consumption. Science of The Total Environment, 290(1–3): 181–198. https://doi.org/10.1016/S0048-9697(01)01075-0

Breivik, K., Sweetman, A., Pacyna, J.M. & Jones, K.C. 2002b. Towards a global historical emission inventory for selected PCB congeners--a mass balance approach. 2. Emissions. The Science of the Total Environment, 290(1–3): 199–224. https://doi.org/10.1016/s0048-9697(01)01076-2

Breivik, K., Sweetman, A., Pacyna, J.M. & Jones, K.C. 2007. Towards a global historical emission inventory for selected PCB congeners — A mass balance approach: 3. An update. Science of The Total Environment, 377(2): 296–307. https://doi.org/10.1016/j.scitotenv.2007.02.026

Bucheli, T.D., Blum, F., Desaules, A. & Gustafsson, Ö. 2004. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere, 56(11): 1061–1076. https://doi.org/10.1016/j.chemosphere.2004.06.002

Bund/Länder-Arbeitsgemeinschaft Bodenschutz. 2017. Hintergrundwertefür anorganische und organische Stoffe in Böden., p. 257. Bodenschutz, Bund/Länder-Arbeitsgemeinschaft. (also available at https://www.labo-deutschland.de/Veroeffentlichungen-Daten-Informationssysteme.html).

Camizuli, E., Scheifler, R., Garnier, S., Monna, F., Losno, R., Gourault, C., Hamm, G., Lachiche, C., Delivet, G., Chateau, C. & Alibert, P. 2018. Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today. Scientific Reports, 8(1): 3436. https://doi.org/10.1038/s41598-018-20983-0

Carlon, C. 2007. Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission. Ispra. Joint Research Centre.

CEA. 2021. Mapping radioactive fallout from atmospheric nuclear tests to study soils in South America. In: CEA/The Knowledge Factory [online]. [Cited 29 March 2021]. https://www.cea.fr/drf/english/Pages/News/Scientific-results/2021/mapping-radioactive-fallout-from-atmospheric-nuclear-tests-to-study-soils-in-south-america.aspx

Chen, C., Wang, Y., Qian, Y., Zhao, X. & Wang, Q. 2015. The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment. Environment International, 77: 95–105. https://doi.org/10.1016/j.envint.2015.01.014

Chen, G., Feng, Q. & Wang, J. 2020. Mini-review of microplastics in the atmosphere and their risks to humans. Science of The Total Environment, 703: 135504. https://doi.org/10.1016/j.scitotenv.2019.135504

Chételat, J., Ackerman, J.T., Eagles-Smith, C.A. & Hebert, C.E. 2020. Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Science of The Total Environment, 711: 135117. https://doi.org/10.1016/j.scitotenv.2019.135117

Climate Change Science Program & Subcommittee on Global Change Research. 2003. Strategic Plan for the U.S. Climate Change Science Program., p. 211. Washington (DC), Climate Change Science Program. (also available at https://data.globalchange.gov/assets/2a/42/f55760db8a810e1fba12c67654dc/ccsp-strategic-plan-2003.pdf).

da Costa, J.P., Santos, P.S.M., Duarte, A.C. & Rocha-Santos, T. 2016. (Nano)plastics in the environment – Sources, fates and effects. Science of The Total Environment, 566–567: 15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041

Crépineau, C., Rychen, G., Feidt, C., Le Roux, Y., Lichtfouse, E. & Laurent, F. 2003. Contamination of pastures by polycyclic aromatic hydrocarbons (PAHs) in the vicinity of a highway. Journal of agricultural and food chemistry, 51(16): 4841–4845. https://doi.org/10.1021/jf0210371

CTBTO. 2012. History of nuclear testing. In: Comprenhensive Nuclear-test-ban Treaty Organization [online]. [Cited 27 March 2021]. https://www.ctbto.org/nuclear-testing/history-of-nuclear-testing/world-overview/

Dachs, J., Eisenreich, S.J. & Hoff, R.M. 2000. Influence of Eutrophication on Air−Water Exchange, Vertical Fluxes, and Phytoplankton Concentrations of Persistent Organic Pollutants. Environmental Science & Technology, 34(6): 1095–1102. https://doi.org/10.1021/es990759e

Dahiya, S., Anhäuser, A., Farrow, A., Thieriot, H., Kumar, A. & Myllyvirta, L. 2020. Global SO2 emission hotspot database. Ranking the World’s Sulfur Dioxide (SO2) Hotspots: 2019-2020., p. 49. Delhi, India, Center for Research on Energy and Clean Air & Greenpeace India. (also available at https://www.greenpeace.org/static/planet4-mena-stateless/a372e5fe-so2-report-english.pdf).

De Cort, M., Dubois, G., Fridman, S.D., Germenchuk, M.G., Izrael, Yu.A., Janssens, A., Jones, A.R., Kelly, G.N., Kvasnikova, E.V., Matveenko, I.I., Nazarov, I.M., Pokumeiko, Yu. M., Sitak, V.A., Stukin, E.D., Tabachny, L. Ya., Tsaturov, Yu.S. & Avdyushin, S.I. 1998. Atlas of caesium deposition on Europe after the Chernobyl accident. Luxembourg, Office for Official Publications of European Communities.

Ding, Q., Cheng, G., Wang, Y. & Zhuang, D. 2017. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of The Total Environment, 578: 577–585. https://doi.org/10.1016/j.scitotenv.2016.11.001

Dragović, S., Mihailović, N. & Gajić, B. 2008. Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72(3): 491–495. https://doi.org/10.1016/j.chemosphere.2008.02.063

Driscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eagar, C., Lambert, K.F., Likens, G.E., Stoddard, J.L. & Weathers, K.C. 2001. Acidic Deposition in the Northeastern United States: Sources and Inputs, Ecosystem Effects, and Management Strategies: The effects of acidic deposition in the northeastern United States include the acidification of soil and water, which stresses terrestrial and aquatic biota. BioScience, 51(3): 180–198. https://doi.org/10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2

Earth Observatory. 2021. Saharan Dust Heading for Europe. In: Earth Observatory, NASA [online]. [Cited 26 April 2021]. https://earthobservatory.nasa.gov/images/147952/saharan-dust-heading-for-europe

ECHA. 2020. PIC Regulation [online]. [Cited 19 July 2020]. https://echa.europa.eu/information-on-chemicals/pic/chemicals

EEA. 2005. Diffuse pollution. In: European Environment Agency [online]. [Cited 22 July 2020]. https://www.eea.europa.eu/archived/archived-content-water-topic/wise-help-centre/glossary-definitions/diffuse-pollution

EEA. 2014. Sulphur dioxide (SO2) emissions., p. 22. Copenhagen, Denmark, European Environment Agency. (also available at https://www.eea.europa.eu/data-and-maps/indicators/eea-32-sulphur-dioxide-so2-emissions-1/assessment-3).

Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., Wang, M., Berntsen, T., Bey, I., Brasseur, G., Buja, L., Collins, W.J., Daniel, J., DeMore, W.B., Derek, N., Dickerson, R., Etheridge, D., Feichter, J., Fraser, P., Friedl, R., Fuglestvedt, J., Gauss, M., Grenfell, L., Grübler, A., Harris, N., Hauglustaine, D., Horowitz, L., Jackman, C., Jacob, D., Jaeglé, L., Jain, A., Kanakidou, M., Karlsdottir, S., Ko, M., Kurylo, M., Lawrence, M., Logan, J.A., Manning, M., Mauzerall, D., McConnell, J., Mickley, L., Montzka, S., Müller, J.F., Olivier, J., Pickering, K., Pitari, G., Roelofs, G.J., Rogers, H., Rognerud, B., Smith, S., Solomon, S., Staehelin, J., Steele, P., Stevenson, D., Sundet, J., Thompson, A., van Weele, M., Joos, F. & McFarland, M. 2001. Chapter 4. Atmospheric Chemistry and Greenhouse Gases. Climate Change 2001: The Scientific Basis, pp. 239–287. New York, Intergovernmental Panel on Climate Change. (also available at https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf).

Elibariki, R. & Maguta, M.M. 2017. Status of pesticides pollution in Tanzania – A review. Chemosphere, 178: 154–164. https://doi.org/10.1016/j.chemosphere.2017.03.036

Ericson, B., Hu, H., Nash, E., Ferraro, G., Sinitsky, J. & Taylor, M.P. 2021. Blood lead levels in low-income and middle-income countries: a systematic review. The Lancet Planetary Health, 5(3): e145–e153. https://doi.org/10.1016/S2542-5196(20)30278-3

FAO. 2017. Voluntary Guidelines for Sustainable Soil Management. Food and Agriculture Organization of the United Nations. [Cited 16 January 2019]. http://www.fao.org/3/i6874en/I6874EN.pdf

FAO. 2019. The International Code of Conduct for the Sustainable Use and Management of Fertilizers. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/mz476en/mz476en.pdf

FAO & WHO. 2014. The international code of conduct on pesticide management. Rome, Inter-Organization Programme for the Sound Management of Chemicals: World Health Organization and Food and Agriculture Organization of the United Nations. 37 pp.

FAO & WHO. 2020a. CODEX ALIMENTARIUS [online]. [Cited 9 June 2020]. http://www.fao.org/fao-who-codexalimentarius/about-codex/en/

FAO & WHO. 2020b. Members of the Commission of the Codex Alimentarius. In: CODEX ALIMENTARIUS [online]. [Cited 9 June 2020]. http://www.fao.org/fao-who-codexalimentarius/about-codex/members/en/

FAO & WHO. 2020c. Maximum Residue Limits (MRLs). In: CODEX ALIMENTARIUS [online]. [Cited 9 June 2020]. http://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/

FAOSTAT. 2020. Emissions shares. In: FAOSTAT [online]. [Cited 23 March 2021]. http://www.fao.org/faostat/en/#data/EM

Federal Ministry of Justice and Consumer Protection. 1998. Federal Soil Protection Act. [Cited 26 April 2021]. https://www.gesetze-im-internet.de/bbodschg/

Fioletov, V.E., McLinden, C.A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S. & Moran, M.D. 2016. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 16(18): 11497–11519. https://doi.org/10.5194/acp-16-11497-2016

Fitzgerald, E., Ault, A.P., Zauscher, M.D., Mayol-Bracero, O.L. & Prather, K.A. 2015. Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmospheric Environment, 115: 19–25. https://doi.org/10.1016/j.atmosenv.2015.04.031

Fujimori, T. & Takigami, H. 2014. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site. Environmental Geochemistry and Health, 36(1): 159–168. https://doi.org/10.1007/s10653-013-9526-y

Gao, Y., Ma, M., Yang, T., Chen, W. & Yang, T. 2018. Global atmospheric sulfur deposition and associated impaction on nitrogen cycling in ecosystems. Journal of Cleaner Production, 195: 1–9. https://doi.org/10.1016/j.jclepro.2018.05.166

Garrison, V.H., Shinn, E.A., Foreman, W.T., Griffin, D.W., Holmes, C.W., Kellogg, C.A., Majewski, M.S., Richardson, L.L., Ritchie, K.B. & Smith, G.W. 2003. African and Asian Dust: From Desert Soils to Coral Reefs. BioScience, 53(5): 469–480. https://doi.org/10.1641/0006-3568(2003)053[0469:AAADFD]2.0.CO;2

Gidden, M.J., Riahi, K., Smith, S.J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D.P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J.C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E. & Takahashi, K. 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 12(4): 1443–1475. https://doi.org/10.5194/gmd-12-1443-2019

Gomes, M.P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M. & Juneau, P. 2014. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of Experimental Botany, 65(17): 4691–4703. https://doi.org/10.1093/jxb/eru269

Guagliardi, I., Cicchella, D. & De Rosa, R. 2012. A Geostatistical Approach to Assess Concentration and Spatial Distribution of Heavy Metals in Urban Soils. Water, Air, & Soil Pollution, 223(9): 5983–5998. https://doi.org/10.1007/s11270-012-1333-z

Gyldenkærne, S. & Jørgensen, S.E. 2000. Modelling the bioavailability of pesticides to soil-dwelling organisms. Ecological Modelling, 132(3): 203–230. https://doi.org/10.1016/S0304-3800(00)00241-6

Hafner, W.D. & Hites, R.A. 2003. Potential Sources of Pesticides, PCBs, and PAHs to the Atmosphere of the Great Lakes. Environmental Science & Technology, 37(17): 3764–3773. https://doi.org/10.1021/es034021f

Hamon, R.E., McLaughlin, M.J., Gilkes, R.J., Rate, A.W., Zarcinas, B., Robertson, A., Cozens, G., Radford, N. & Bettenay, L. 2004. Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 18(1). https://doi.org/10.1029/2003GB002063

Healy, J.F. 1979. Mining and Processing Gold Ores in the Ancient World. JOM, 31(8): 11–16. https://doi.org/10.1007/BF03354474

Heinisch, E., Kettrup, A. & Wenzel-Klein, S. 1993. DDT/Lindan-Masseneinsätze in der DDR. Umweltwissenschaften und Schadstoff-Forschung, 5(5): 277–280. https://doi.org/10.1007/BF02937964

Hou, D., O’Connor, D., Nathanail, P., Tian, L. & Ma, Y. 2017. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environmental Pollution, 231: 1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021

IAEA. 2016. Nuclear accident knowledge taxonomy. IAEA Nuclear Energy Series No. NG-T-6.8. Vienna, Austria, International Atomic Energy Agency. 52 pp. (also available at https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4853403).

IISD. 2019. How Can Technology in Mining Protect the Environment? In: International Institute for Sustainable Development [online]. [Cited 9 March 2021]. https://www.iisd.org/articles/how-can-technology-mining-protect-environment

INI. 2017. The International Nitrogen Initiative. In: Initrogen [online]. [Cited 9 June 2020]. https://initrogen.org/content/about-ini

IPEN. 2017. Global lead paint elimination report., p. 52. Sweden, International Pollutants Elimination Network. (also available at https://ipen.org/sites/default/files/documents/ipen-global-lead-report-2017-v1_2-en.pdf).

ISO. 2015. ISO 11074:2015. Soil quality — Vocabulary. International Organization for Standardization. [Cited 1 October 2020]. https://www.iso.org/obp/ui/#iso:std:iso:11074:ed-2:v1:en:term:6.1.17

ISO. 2021. ISO Technical Committee 190 - Soil quality. In: ISO [online]. [Cited 26 April 2021]. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/committee/05/43/54328.html

Jennings, A.A. 2008. Analysis of worldwide regulatory guidance for surface soil contamination. Journal of Environmental Engineering and Science, 7(6): 597–615. https://doi.org/10.1139/S08-034

Jennings, A.A. & Li, Z. 2015. Residential surface soil guidance applied worldwide to the pesticides added to the Stockholm Convention in 2009 and 2011. Journal of Environmental Management, 160: 226–240. https://doi.org/10.1016/j.jenvman.2015.06.020

Jennings, A.A. & Li, Z. 2017. Worldwide Regulatory Guidance Values Applied to Direct Contact Surface Soil Pesticide Contamination: Part II—Noncarcinogenic Pesticides. Air, Soil and Water Research, 10. https://doi.org/10.1177/1178622117711931

Ji, J.S. 2020. The IMO 2020 sulphur cap: a step forward for planetary health? The Lancet Planetary Health, 4(2): e46–e47. https://doi.org/10.1016/S2542-5196(20)30002-4

Jiang, X., Liu, G., Wang, M. & Zheng, M. 2015. Formation of Polychlorinated Biphenyls on Secondary Copper Production Fly Ash: Mechanistic Aspects and Correlation to Other Persistent Organic Pollutants. Scientific Reports, 5(March): 1–10. https://doi.org/10.1038/srep13903

Johnson, J., Pannatier, E.G., Carnicelli, S., Cecchini, G., Clarke, N., Cools, N., Hansen, K., Meesenburg, H., Nieminen, T.M., Pihl‐Karlsson, G., Titeux, H., Vanguelova, E., Verstraeten, A., Vesterdal, L., Waldner, P. & Jonard, M. 2018. The response of soil solution chemistry in European forests to decreasing acid deposition. Global Change Biology, 24(8): 3603–3619. https://doi.org/10.1111/gcb.14156

Kabir, E., Ray, S., Kim, K., Yoon, H., Jeon, E., Kim, Y.S., Cho, Y., Yun, S. & Brown, R.J.C. 2012. Current Status ofTrace Metal Pollution in Soils Affected by Industrial Activities. (May 2012). https://doi.org/10.1100/2012/916705

Kanhai, L.D.K., Gardfeldt, K., Krumpen, T., Thompson, R.C. & O’Connor, I. 2020. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Scientific Reports, 10(1): 5004. https://doi.org/10.1038/s41598-020-61948-6

Kawai, T., Jagiello, K., Sosnowska, A., Odziomek, K., Gajewicz, A., Handoh, I.C., Puzyn, T. & Suzuki, N. 2014. A New Metric for Long-Range Transport Potential of Chemicals. Environmental Science & Technology, 48(6): 3245–3252. https://doi.org/10.1021/es4026003

Kelly, A., Lannuzel, D., Rodemann, T., Meiners, K.M. & Auman, H.J. 2020. Microplastic contamination in east Antarctic sea ice. Marine Pollution Bulletin, 154: 111130. https://doi.org/10.1016/j.marpolbul.2020.111130

Kishimba, M. & Mihale, M. 2009. Levels of pesticide residues and metabolites in soil at Vikuge farm, Kibaha district, Tanzania – A classic case of soil contamination by obsolete pesticides. Tanzania Journal of Science, 30(2). https://doi.org/10.4314/tjs.v30i2.18402

Koutnik, V.S., Leonard, J., Alkidim, S., DePrima, F.J., Ravi, S., Hoek, E.M.V. & Mohanty, S.K. 2021. Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling. Environmental Pollution, 274: 116552. https://doi.org/10.1016/j.envpol.2021.116552

Kowalska, J.B., Mazurek, R., Gąsiorek, M. & Zaleski, T. 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6): 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

Kurt-Karakus, P.B., Bidleman, T.F., Staebler, R.M. & Jones, K.C. 2006. Measurement of DDT Fluxes from a Historically Treated Agricultural Soil in Canada. Environmental Science & Technology, 40(15): 4578–4585. https://doi.org/10.1021/es060216m

Kwon, H.-O. & Choi, S.-D. 2014. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Science of The Total Environment, 470–471: 1494–1501. https://doi.org/10.1016/j.scitotenv.2013.08.031

Lasota, J. & Błońska, E. 2018. Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types. Water, Air, & Soil Pollution, 229(6): 204. https://doi.org/10.1007/s11270-018-3857-3

Lekei, E.E., Ngowi, A. V. & London, L. 2014. Farmers’ knowledge, practices and injuries associated with pesticide exposure in rural farming villages in Tanzania. BMC Public Health, 14(1): 1–13. https://doi.org/10.1186/1471-2458-14-389

Li, Z. & Jennings, A. 2017. Worldwide regulations of standard values of pesticides for human health risk control: A review

Likens, G.E. & Butler, T.J. 2020. Atmospheric acid deposition. In Y. Wang, ed. Atmosphere and Climate. Second edition edition, pp. 45–53. Handbook of natural resources. Boca Raton, FL, CRC Press.

Luo, Q., Gu, L., Shan, Y., Wang, H. & Sun, L. 2019. Distribution, source apportionment, and health risk assessment of polycyclic aromatic hydrocarbons in urban soils from Shenyang, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00451-y

Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., Benyacoub, S. & Giraudoux, P. 2010. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental pollution (Barking, Essex : 1987), 158(6): 2294–2301. https://doi.org/10.1016/j.envpol.2010.02.001

Mackay, D. & Arnot, J.A. 2011. The Application of Fugacity and Activity to Simulating the Environmental Fate of Organic Contaminants. Journal of Chemical & Engineering Data, 56(4): 1348–1355. https://doi.org/10.1021/je101158y

Mackay, D., Arnot, J.A., Webster, E. & Reid, L. 2009. The Evolution and Future of Environmental Fugacity Models BT - Ecotoxicology Modeling. In J. Devillers, ed., pp. 355–375. Boston, MA, Springer US.

Mahugija, J.A.M. 2013. Status and distributions of pesticides buried at five sites in Arusha and Mbeya regions, Tanzania. African Journal of Pure and Applied Chemistry, 7(12): 382–393. https://doi.org/10.5897/AJPAC2013.

Mahugija, J.A.M., Henkelmann, B. & Schramm, K.W. 2014. Levels, compositions and distributions of organochlorine pesticide residues in soil 5-14 years after clean-up of former storage sites in Tanzania. Chemosphere, 117(1): 330–337. https://doi.org/10.1016/j.chemosphere.2014.07.052

Maliszewska-Kordybach, B., Smreczak, B., Klimkowicz-Pawlas, A. & Terelak, H. 2008. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere, 73(8): 1284–1291. https://doi.org/10.1016/j.chemosphere.2008.07.009

Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. 2020. Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00014

Marquès, M., Sierra, J., Drotikova, T., Mari, M., Nadal, M. & Domingo, J.L. 2017. Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard. Environmental Research, 159: 202–211. https://doi.org/10.1016/j.envres.2017.08.003

Masih, A. & Taneja, A. 2006. Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere, 65(3): 449–456. https://doi.org/10.1016/j.chemosphere.2006.01.062

Masson, M., Walter, M. & Priester, M. 2013. Incentivizing Clean Technology in the Mining Sector in Latin America and the Caribbean: The Role of Public Mining Institutions. Technical Notes No. IDB-TN-612. Inter-American Development Bank. 38 pp. (also available at https://publications.iadb.org/publications/english/document/Incentivizing-Clean-Technology-in-the-Mining-Sector-in-Latin-America-and-the-Caribbean-The-Role-of-Public-Mining-Institutions.pdf).

Matschullat, J., Ottenstein, R. & Reimann, C. 2000. Geochemical background – can we calculate it? Environmental Geology, 39(9): 990–1000. https://doi.org/10.1007/s002549900084

Meijer, S.N., Ockenden, W.A., Sweetman, A., Breivik, K., Grimalt, J.O. & Jones, K.C. 2003. Global Distribution and Budget of PCBs and HCB in Background Surface Soils: Implications for Sources and Environmental Processes. Environmental Science & Technology, 37(4): 667–672. https://doi.org/10.1021/es025809l

Middleton, N.J. 2017. Desert dust hazards: A global review. Aeolian Research, 24: 53–63. https://doi.org/10.1016/j.aeolia.2016.12.001

Miglioranza, K.S.B., Aizpún de Moreno, J.E., Moreno, V.J., Osterrieth, M.L. & Escalante, A.H. 1999. Fate of organochlorine pesticides in soils and terrestrial biota of “Los Padres” pond watershed, Argentina. Environmental Pollution, 105(1): 91–99. https://doi.org/10.1016/S0269-7491(98)00200-0

Minamata Convention. 2021. Parties of the Minamata Convention. In: Mercury Convention [online]. [Cited 26 January 2020]. http://www.mercuryconvention.org/Countries/Parties/tabid/3428/language/en-US/Default.aspx

Minamata Convention on Mercury. 2019. Minamata Convention on Mercury. Text and Annexes [online]. [Cited 26 December 2019]. http://www.mercuryconvention.org/Portals/11/documents/Booklets/COP3-version/Minamata-Convention-booklet-Sep2019-EN.pdf

Ministry of the Environment, Finland. 2014. Government Decree on the Assessment of Soil Contamination and Remediation Needs. [Cited 8 October 2020]. https://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf

Mishra, K., Sharma, R.C. & Kumar, S. 2012. Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicology and Environmental Safety, 76: 215–225. https://doi.org/10.1016/J.ECOENV.2011.09.014

MODIS Rapid Response. 2007. Saharan dust over the Caribbean Sea. In: NASA visible earth [online]. [Cited 8 March 2021]. https://www.visibleearth.nasa.gov/images/112096/saharan-dust-over-the-caribbean-sea/112096t

Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J. & Vesely, J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169): 537–540. https://doi.org/10.1038/nature06316

Motelay-Massei, A., Ollivon, D., Garban, B., Teil, M.J., Blanchard, M. & Chevreuil, M. 2004. Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere, 55(4): 555–565. https://doi.org/10.1016/j.chemosphere.2003.11.054

MSC-E. 2014. Emissions for global modelling [online]. [Cited 21 March 2021]. http://en.msceast.org/index.php/j-stuff/content/list-layout/global

Nam, J.J., Sweetman, A.J. & Jones, K.C. 2009. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. Journal of Environmental Monitoring, 11(1): 45–48. https://doi.org/10.1039/B813841A

Nam, J.J., Thomas, G.O., Jaward, F.M., Steinnes, E., Gustafsson, O. & Jones, K.C. 2008. PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70(9): 1596–1602. https://doi.org/10.1016/j.chemosphere.2007.08.010

NASA. 2020. MEaSUREs SO2 source emission catalogue. In: Global Sulfur Dioxide Monitoring Home Page [online]. [Cited 23 March 2021]. https://so2.gsfc.nasa.gov/measures.html

Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Smith, C. & Chambers, B.J. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of The Total Environment, 311(1): 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6

Nizzetto, L., Jarvis, A., Brivio, P.A., Jones, K.C. & Di Guardo, A. 2008. Seasonality of the Air−Forest Canopy Exchange of Persistent Organic Pollutants. Environmental Science & Technology, 42(23): 8778–8783. https://doi.org/10.1021/es802019g

Nizzetto, L., MacLeod, M., Borgå, K., Cabrerizo, A., Dachs, J., Guardo, A. Di, Ghirardello, D., Hansen, K.M., Jarvis, A., Lindroth, A., Ludwig, B., Monteith, D., Perlinger, J.A., Scheringer, M., Schwendenmann, L., Semple, K.T., Wick, L.Y., Zhang, G. & Jones, K.C. 2010. Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environmental Science and Technology, 44(17): 6526–6531. https://doi.org/10.1021/es100178f

Obrist, D., Zielinska, B. & Perlinger, J.A. 2015. Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests. Chemosphere, 134: 98–105. https://doi.org/10.1016/j.chemosphere.2015.03.087

Ockenden, W.A., Breivik, K., Meijer, S.N., Steinnes, E., Sweetman, A.J. & Jones, K.C. 2003. The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environmental Pollution, 121(1): 75–80. https://doi.org/10.1016/S0269-7491(02)00204-X

OECD. 2018. Best Available Techniques (BAT) for Preventing and Controlling Industrial Pollution. Activity 2: Approaches to Establishing Best Available Techniques Around the World., p. 154. Environment, Health and Safety, Environment Directorate, OECD. (also available at https://www.oecd.org/chemicalsafety/risk-management/approaches-to-establishing-best-available-techniques-around-the-world.pdf).

Okoffo, E.D., O’Brien, S., Ribeiro, F., Burrows, S.D., Toapanta, T., Rauert, C., O’Brien, J.W., Tscharke, B.J., Wang, X. & Thomas, K.V. 2021. Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environmental Science: Processes & Impacts, 23(2): 240–274. https://doi.org/10.1039/D0EM00312C

Pandelova, M., Henkelmann, B., Bussian, B.M. & Schramm, K.-W. 2018. Results of the second national forest soil inventory in Germany - Interpretation of level and stock profiles for PCDD/F and PCB in terms of vegetation and humus type. Science of the Total Environment, 610–611. https://doi.org/10.1016/j.scitotenv.2017.07.246

PEN. 2016. Polychlorinated Biphenyls (PCB) Inventory Guidance., p. 53. UNEP, Thematic Group on Inventories of the PCB Elimination Network (PEN), Stockholm Convention. (also available at http://chm.pops.int/Implementation/PCBs/DocumentsPublications/tabid/665/Default.aspx).

Prasad, A.K., El-Askary, H. & Kafatos, M. 2010. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season. Environmental Pollution, 158(11): 3385–3391. https://doi.org/10.1016/j.envpol.2010.07.035

Prospero, J.M. 1999. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proceedings of the National Academy of Sciences, 96(7): 3396–3403. https://doi.org/10.1073/pnas.96.7.3396

Rankin, B. 2007. Nuclear explosions. Radicalcartography.net. [Cited 27 March 2021]. http://www.radicalcartography.net/index.html?nuclear

Ravindra, K., Sokhi, R. & Van Grieken, R. 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13): 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010

Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O’Connor, P., eds. 2014. Chemistry of Europe’s Agricultural Soils, Part B. General background information and further analysis of the GEMAS data set. Chemistry of Europe’s agricultural soils No. ed. by Clemens Reimann ...; Pt. B. Hannover, Bundesanst. für Geowiss. und Rohstoffe (BGR). 352 pp. (also available at https://www.schweizerbart.de/publications/detail/isbn/9783510968473).

Reimann, C. & Caritat, P. 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ, 337. https://doi.org/10.1016/j.scitotenv.2004.06.011

Reimann, C. & de Caritat, P. 2017. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of The Total Environment, 578: 633–648. https://doi.org/10.1016/j.scitotenv.2016.11.010

Reimann, C. & Garrett, R.G. 2005. Geochemical background—concept and reality. Science of The Total Environment, 350(1): 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047

Rotterdam Convention. 2010. Rotterdam Convention [online]. [Cited 26 December 2019]. http://www.pic.int/TheConvention/Overview/tabid/1044/language/en-US/Default.aspx

Rotterdam Convention. 2020a. Information archive of the chemicals recommended for listing in Annex III [online]. [Cited 8 June 2020]. http://www.pic.int/TheConvention/Chemicals/Recommendedforlisting/Informationarchive/tabid/8179/language/en-US/Default.aspx

Rotterdam Convention. 2020b. Annex III Chemicals [online]. [Cited 8 June 2020]. http://www.pic.int/TheConvention/Chemicals/AnnexIIIChemicals/tabid/1132/language/en-US/Default.aspx

Rotterdam Convention. 2020c. Chemicals recommended for listing in Annex III. In: Rotterdam Convention [online]. [Cited 8 June 2020]. http://www.pic.int/TheConvention/Chemicals/RecommendedtoCOP/tabid/1185/language/en-US/Default.aspx

Rotterdam Convention. 2021. Status of ratifications of the Rotterdam Convention [online]. [Cited 26 January 2020]. http://www.pic.int/Countries/Statusofratifications/tabid/1072/language/en-US/Default.aspx

Saha, J.K., Selladurai, R., Coumar, M.V., Dotaniya, M.L., Kundu, S. & Patra, A.K. 2017. Impacts of Soil Pollution and Their Assessment. In J.K. Saha, R. Selladurai, M.V. Coumar, M.L. Dotaniya, S. Kundu & A.K. Patra, eds. Soil Pollution - An Emerging Threat to Agriculture, pp. 37–73. Environmental Chemistry for a Sustainable World. Singapore, Springer. (also available at https://doi.org/10.1007/978-981-10-4274-4_3).

Sarigiannis, D.A. & Hansen, U. 2012. Considering the cumulative risk of mixtures of chemicals – A challenge for policy makers. Environmental Health, 11(Suppl 1): S18. https://doi.org/10.1186/1476-069X-11-S1-S18

Sartori, F., Wade, T.L., Sericano, J.L., Mohanty, B.P. & Smith, K.A. 2010. Polycyclic Aromatic Hydrocarbons in Soil of the Canadian River Floodplain in Oklahoma. Journal of Environmental Quality, 39(2): 568–579. https://doi.org/10.2134/jeq2009.0270

Schenker, U., Scheringer, M. & Hungerbühler, K. 2008. Investigating the Global Fate of DDT: Model Evaluation and Estimation of Future Trends. Environmental Science & Technology, 42(4): 1178–1184. https://doi.org/10.1021/es070870h

Schmaltz, J. & LANCE/EOSDIS Rapid Response. 2017. Dust Above the Red Sea. In: NASA visible earth [online]. [Cited 8 March 2021]. https://visibleearth.nasa.gov/images/90490/dust-above-the-red-sea

Schröder, W., Nickel, S., Schönrock, S., Meyer, M., Wosniok, W., Harmens, H., Frontasyeva, M.V., Alber, R., Aleksiayenak, J., Barandovski, L., Carballeira, A., Danielsson, H., de Temmermann, L., Godzik, B., Jeran, Z., Karlsson, G.P., Lazo, P., Leblond, S., Lindroos, A.-J., Liiv, S., Magnússon, S.H., Mankovska, B., Martínez-Abaigar, J., Piispanen, J., Poikolainen, J., Popescu, I.V., Qarri, F., Santamaria, J.M., Skudnik, M., Špirić, Z., Stafilov, T., Steinnes, E., Stihi, C., Thöni, L., Uggerud, H.T. & Zechmeister, H.G. 2016. Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environmental Science and Pollution Research, 23(11): 10457–10476. https://doi.org/10.1007/s11356-016-6577-5

SeaWiFS Project, NASA/Goddard Space Flight Center & ORBIMAGE. 1999. China Dust. In: NASA visible earth [online]. [Cited 8 March 2021]. https://visibleearth.nasa.gov/images/52893/china-dust/52895l

SeaWiFS Project, NASA/Goddard Space Flight Center & ORBIMAGE. 2000. Sahara Dust. In: NASA visible earth [online]. [Cited 8 March 2021]. https://visibleearth.nasa.gov/images/55348/seawifs-sahara-dust/55349l

Selin, N.E. 2018. A proposed global metric to aid mercury pollution policy. Science, 360(6389): 607–609. https://doi.org/10.1126/science.aar8256

Semeena, S. & Lammel, G. 2003. Effects of various scenarios of entry of DDT and γ-HCH on the global environmental fate as predicted by a multicompartment chemistry-transport model. Fresenius Environmental Bulletin, 12(8): 925–939.

Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang, Y., Chen, Y., Lu, Y., Chen, H., Li, T., Sun, K., Li, B., Liu, W., Liu, J. & Tao, S. 2013. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, 47(12): 6415–6424. https://doi.org/10.1021/es400857z

Smith, D.B., Wang, X., Reeder, S. & Demetriades, A. 2012. The IUGS/IAGC Task Group on Global Geochemical Baselines. [Cited 17 March 2021]. http://pubs.er.usgs.gov/publication/70044790

Steinnes, E. 2013. Heavy metal contamination of the terrestrial environment from long-range atmospheric transport: Evidence from 35 years of research in Norway. E3S Web of Conferences, 1: 35001. https://doi.org/10.1051/e3sconf/20130135001

Stockholm Convention. 2008. The Stockholm Convention Overview. In: Stockholm Convention on Persistent Organic Pollutants [online]. [Cited 7 November 2019]. http://chm.pops.int/TheConvention/Overview/History/Overview/tabid/3549/Default.aspx

Stockholm Convention. 2017. The 16 new POPs. An introduction to the chemicals added to the Stockholm Convention as Persistent Organic Pollutants by the Conference of the Parties. Geneva, Switzerland, Stockholm Convention Secretariat United Nations Environment. 13 pp. (also available at http://www.pops.int/Portals/0/download.aspx?d=UNEP-POPS-PUB-Booklet-16NewPOPs-201706.English.pdf).

Stockholm Convention. 2019a. The 12 Initial POPs under the Stockholm Convention [online]. [Cited 8 June 2020]. http://chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx

Stockholm Convention. 2019b. The New POPs under the Stockholm Convention. In: Stockholm Convention on Persistent Organic Pollutants [online]. [Cited 8 June 2020]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx

Stockholm Convention. 2021a. Listing of POPs in the Stockholm Convention [online]. [Cited 22 December 2019]. http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx

Stockholm Convention. 2021b. Status of ratifications of the Stockholm Convention [online]. [Cited 26 January 2020]. http://chm.pops.int/Countries/StatusofRatifications/PartiesandSignatoires/tabid/4500/Default.aspx

Strebl, F., Ehlken, S., Gerzabek, M.H. & Kirchner, G. 2007. Behaviour of radionuclides in soil/crop systems following contamination. In G. Shaw, ed. Radioactivity in the Environment, pp. 19–42. Radioactivity in the Terrestrial Environment. Elsevier. (also available at https://www.sciencedirect.com/science/article/pii/S1569486006100029).

Sun, L., Yin, X., Liu, X., Zhu, R., Xie, Z. & Wang, Y. 2006. A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica. Science of The Total Environment, 368(1): 236–247. https://doi.org/10.1016/j.scitotenv.2005.09.092

Sundseth, K., Pacyna, J.M., Pacyna, E.G., Pirrone, N. & Thorne, R.J. 2017. Global Sources and Pathways of Mercury in the Context of Human Health. International Journal of Environmental Research and Public Health, 14(1): 105. https://doi.org/10.3390/ijerph14010105

Sweetman, A.J., Valle, M.D., Prevedouros, K. & Jones, K.C. 2005. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data. Chemosphere, 60(7): 959–972. https://doi.org/10.1016/j.chemosphere.2004.12.074

Syed, J.H., Iqbal, M., Zhong, G., Katsoyiannis, A., Yadav, I.C., Li, J. & Zhang, G. 2017. Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. Scientific Reports, 7(1): 2692. https://doi.org/10.1038/s41598-017-02999-0

Tarvainen, T., Salminen, R. & Vos, W.D. 2005. Geochemical atlas of Europe. Background information, methodology and maps Part 1 Part 1. Espoo, Geological Survey of Finland.

Tebaay, R.H., Welp, G. & Brümmer, G.W. 1993. Gehalte an Polycyclischen Aromatischen Kohlenwasserstoffen (PAK) und deren Verteilungsmuster in unterschiedlich belasteten Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 156(1): 1–10. https://doi.org/10.1002/jpln.19931560102

UN. 2020. Map of the World. United Nations. [Cited 27 March 2021]. https://www.un.org/geospatial/file/3420/download

UNEP. 2019a. Global Mercury Assessment 2018., p. 62. Geneva, Switzerland, United Nations Environment Programme, Chemicals and Health Branch. (also available at https://wedocs.unep.org/bitstream/handle/20.500.11822/27579/GMA2018.pdf?sequence=1&isAllowed=y).

UNEP. 2019b. Just two countries away from global elimination of lead in petrol. In: UN Environment [online]. [Cited 27 October 2020]. http://www.unenvironment.org/news-and-stories/story/just-two-countries-away-global-elimination-lead-petrol

UNEP. 2020. Global Mercury Partnership. In: UN Environment [online]. [Cited 12 March 2021]. https://prezi.com/embed/9xfukdyjcmam/?bgcolor=ffffff&lock_to_path=0&autoplay=0&autohide_ctrls=0&landing_data=bHVZZmNaNDBIWnNjdEVENDRhZDFNZGNIUE43MHdLNWpsdFJLb2ZHanI5bDZmRWExQzVQQmNyUmhEVzh3RktycytnPT0&landing_sign=Gh4fKDQ9sLSKt93K9km1xilM5Dr9asG9Z9BwDEKakZI

United Kingdom Department for Environment, Food and Rural Affairs. 2012. Environmental Protection Act 1990: Part 2A - Contaminated Land Statutory Guidance.

UNSCEAR, ed. 2000. Sources and effects of ionizing radiation: Report of the United Nations Scientific Committee on the Effects of Atomic Radiation 2000 to the General Assembly. New York, United Nations. 659 pp. (also available at http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-A.pdf).

US EPA. 2020. TSCA. In: Chemicals under the Toxic Substances Control Act (TSCA) [online]. [Cited 19 July 2020]. https://www.epa.gov/chemicals-under-tsca

Van Leeuwen, C.J., Bro-Rasmussen, F., Feijtel, T.C.J., Arndt, R., Bussian, B.M., Calamari, D., Glynn, P., Grandy, N.J., Hansen, B., Van Hemmen, J.J., Hurst, P., King, N., Koch, R., Müller, M., Solbé, J.F., Speijers, G.A.B. & Vermeire, T. 1996. Risk assessment and management of new and existing chemicals. Environmental Toxicology and Pharmacology, 2(4): 243–299. https://doi.org/10.1016/S1382-6689(96)00072-5

Vaxevanopoulos, M., Vavelidis, M., Melfos, V., Malamidou, D. & Pavlides, S. 2018. Ancient mining and metallurgical activity at the gold-silver-copper ore deposits in Mavrokorfi area, Mount Pangaeon (Northeast Greece). Mining for ancient copper, pp. 385–398. Monograph Series No. 37. Tel Aviv University.

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M. & Reifferscheid, G. 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(1): 12. https://doi.org/10.1186/s12302-014-0012-7

Wania, F. & Mackay, D. 1996. The Global Fractionation of Persistent Organic Pollutants. Kjeller - Norway, Norwegian Institute for Air Research. 28 pp. (also available at https://www.osti.gov/etdeweb/servlets/purl/572612).

Wegmann, F., Scheringer, M., Möller, M. & Hungerbühler, K. 2004. Influence of Vegetation on the Environmental Partitioning of DDT in Two Global Multimedia Models. Environmental Science & Technology, 38(5): 1505–1512. https://doi.org/10.1021/es034262n

WHO. 2015. Global Action Plan on Antimicrobial Resistance. World Health Organization. [Cited 9 June 2020]. https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1

WHO. 2020a. FAO/OIE/WHO Tripartite Collaboration on AMR. In: World Health Organization [online]. [Cited 9 June 2020]. http://www.who.int/foodsafety/areas_work/antimicrobial-resistance/tripartite/en/

WHO. 2020b. One Health. In: World Health Organization [online]. [Cited 9 June 2020]. https://www.who.int/news-room/q-a-detail/one-health

Wilcke, W. 2000. SYNOPSIS Polycyclic Aromatic Hydrocarbons (PAHs) in Soil — a Review. Journal of Plant Nutrition and Soil Science, 163(3): 229–248. https://doi.org/10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6

Woźniak, E., Sicińska, P., Michałowicz, J., Woźniak, K., Reszka, E., Huras, B., Zakrzewski, J. & Bukowska, B. 2018. The mechanism of DNA damage induced by Roundup 360 PLUS, glyphosate and AMPA in human peripheral blood mononuclear cells - genotoxic risk assessement. Food and Chemical Toxicology, 120: 510–522. https://doi.org/10.1016/j.fct.2018.07.035

Wright, L.P., Zhang, L., Cheng, I., Aherne, J. & Wentworth, G.R. 2018. Impacts and Effects Indicators of Atmospheric Deposition of Major Pollutants to Various Ecosystems - A Review. Aerosol and Air Quality Research, 18(8): 1953–1992. https://doi.org/10.4209/aaqr.2018.03.0107

Yun, S., Chae, M., Kim, Y., Kong, M., Jung, H. & Kim, S. 2018. Evaluation on Heavy Metal Contents in Agricultural Soils around Industrial Complexes in Korea. Korean Journal of Environmental Agriculture Korean, 37(2): 141–145.

Zelinkova, Z. & Wenzl, T. 2015. EU marker polycyclic aromatic hydrocarbons in food supplements: analytical approach and occurrence. Food Additives & Contaminants: Part A, 32(11): 1914–1926. https://doi.org/10.1080/19440049.2015.1087059

Zeng, S., Ma, J., Ren, Y., Liu, G.-J., Zhang, Q. & Chen, F. 2019. Assessing the Spatial Distribution of Soil PAHs and their Relationship with Anthropogenic Activities at a National Scale. International Journal of Environmental Research and Public Health, 16(24): 4928. https://doi.org/10.3390/ijerph16244928

Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. 2018. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth and Planetary Science Letters, 486: 23–31. https://doi.org/10.1016/j.epsl.2018.01.004

Zhu, Y.G. & Shaw, G. 2000. Soil contamination with radionuclides and potential remediation. Chemosphere, 41(1): 121–128. https://doi.org/10.1016/S0045-6535(99)00398-7