Interrupting LSD virus transmission: Role of vaccines and the evaluation of control programmes

Nick Lyons
EuFMD/ The Pirbright Institute
Vaccines and protection

Susceptible → Infected → Diseased → Recovered/immune

INFECTIOUS

TRANSMISSION

Vaccines and protection
Vaccines and protection

Susceptible → Infected → Diseased → Recovered/immune

Vaccines may *protect* against:
- Disease

INFECTIOUS

TRANSMISSION
Vaccines and protection

Susceptible → Infected → Diseased → Recovered/immune

Vaccines may *protect* against:
- Disease
- Infectiousness
Vaccines and protection

Susceptible → Infected → Diseased → Recovered/immune

Vaccines may protect against:
- Disease
- Infectiousness
- Infection
Vaccines and protection

Vaccines may *protect* against

- Disease
- Infection
- Infectiousness

Examples:
- Polio – OPV vs IPV
- Tuberculosis – BCG
- FMD – killed vaccines

Protective effects are not necessarily absolute..... Animals that have less severe disease may be less infectious...
Direct versus Indirect protection

Direct protection – does the vaccine protect the individual that is vaccinated

Indirect protection – does vaccination protect those that are not vaccinated due to reduced incidence in whole population
Direct versus *Indirect* protection

Direct protection – does the vaccine protect the individual that is vaccinated

Indirect protection – does vaccination protect those that are not vaccinated due to reduced incidence in whole population
Direct versus Indirect protection

Indirect protection – does vaccination protect those that are not vaccinated due to reduced incidence in whole population

Indirect protection:
• So called “herd effect”
• Vaccine must not just prevent against disease
• These combined effects inform our understanding of the “herd immunity threshold”..i.e. the coverage needed to eliminate infection
Vaccine *efficacy* versus *effectiveness*

Important to have a *consistent definitions* to evaluate vaccines

\[\text{Vaccine efficacy} = 1 - \frac{\text{Incidence in vaccinated}}{\text{Incidence in unvaccinated}} \]

1. Performed under “ideal” conditions
2. Assumes equal exposure in vaccinated and unvaccinated populations
3. Usually a randomised controlled trial

Vaccine effectiveness: same calculation but under field conditions

....how effective is your vaccination *policy* rather than how efficacious is the vaccine....
Vaccine effectiveness – example from Ethiopia

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccination</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>274 (16.2%)</td>
<td>23 (25.0%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1413 (83.8%)</td>
<td>69 (75.0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1687</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

Incidence in vaccinated = 274/1687 = 16.2%
Incidence in unvaccinated = 23/92 = 25.0%
Vaccine effectiveness = 1 – (16.2/25.0)
= 1 – 0.65
= 0.35 or 35% (95%CI 3-56%)

Unpublished data used with permission from Dr Getachew Gari, NAHDIC
Vaccine effectiveness – example from Ethiopia

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>274 (16.2%)</td>
</tr>
<tr>
<td>No</td>
<td>1413 (83.8%)</td>
</tr>
</tbody>
</table>

Vaccine effectiveness will often vary in different settings

This estimate is UNADJUSTED for confounders such as age, number of lifetime doses, and previous disease

= 0.35 or 35% (95%CI 3-56%)
Effectiveness studies – a few key points

• **Confounders** - for observational studies it is essential to adjust for exposure risk and previous disease (i.e. age)
• **Selection bias** – how are areas/farms chosen in the analysis
• **Ecological studies** - Comparing groups or regions is complicated as it is difficult to say all farms are at equal exposure risk...unless this is adjusted for in the analysis
• **Vaccines doses** – should consider the total number of lifetime doses, and the timing of the last dose
• Important to consider the impact of **maternal immunity**
Other transmission blocks

Other control measures:
- Clean needles for vaccination/treatment
Other transmission blocks

Susceptible → Infected → Diseased → Recovered/immune

Other control measures:
- Insecticide?

INFECTIOUS

TRANSMISSION
Evaluation of other interventions

• **Insect control**
 • Various insects implicated....but which are the most important?
 • Tick control?
 • Lessons from *Bluetongue*...?
 • Sudan
 • Cross sectional study, random sampling
 • Questionnaires, blood samples
 • Multivariate analysis – Individuals from farms using vector control at lower risk of seropositivity
Evaluation of other interventions

• **Insect control**

 • Lessons from *Bluetongue*

 • Bulls on a stud farm in Germany. Permanently housed.
 • Ear-tags (permethrin) and regular pour-ons
 • Looked at various haematophagous insects
 • Assessed their feeding activity
 • Still saw high feeding rates in Culicoides and Aedes/Anopheles species
Evaluation of other interventions

- **Insect control - summary**
 - The effectiveness of different interventions for insect control is likely to be highly variable between different settings depending on:
 - Vector types present
 - Density of different vectors
 - Resistance to insecticides
 - Prevalence of LSDV
 - Climate
Evaluation of other interventions

• Insect control – summary
 • There is potential for insecticides to be useful for LSD
 • Suggest that observational studies in the field should be performed in the first instance to see how effective they might be for LSD
 • Cluster randomised trials would be an optimal study design for assessing any interventions
Thank you for your attention
Any questions?

Interrupting LSD virus transmission:
Role of vaccines and the evaluation of
control programmes

Nick Lyons
EuFMD/ The Pirbright Institute