Español || Français
      AQUASTAT Home        About AQUASTAT     FAO Water    Statistics at FAO

Featured products

Main Database
Dams
Global map of irrigation areas
Irrigation water use
Water and gender
Climate info tool
Institutions

Geographical entities

Countries, regions, river basins

Themes

Water resources
Water uses
Irrigation and drainage
Wastewater
Institutional framework
Other themes

Information type

Datasets
Publications
Summary tables
Maps and spatial data
Glossary

Info for the media

Did you know...?
Visualizations and infographics
SDG Target 6.4
KWIP
UNW Briefs
     

Read the full profile

Ethiopia

Irrigation and drainage

Evolution of irrigation development

River basin master plan studies and related surveys indicate a maximum irrigation potential of about 5.7 million ha, but about 3.7 million ha is commonly quoted. The irrigation potential of Ethiopia is at present estimated at about 2.7 million ha, considering the availability of water and land resources, technology and finance (Table 7).


Traditional irrigation in Ethiopia dates back several centuries, especially in the highlands for subsistence food crops, while "modern" irrigation was started by the commercial irrigated sugar estate established in the early 1950s by the Imperial Government of Ethiopia and the Dutch company known as HVA-Ethiopia in the upper Awash basin for industrial crops such as sugarcane and cotton. In the 1960s, large-scale irrigation was developed by private companies in the whole Awash basin, thanks to the Koka dam, as well as in the Lower Rift Valley. Modern small-scale irrigation through communal schemes started only in the 1970s to fight major droughts and famines, especially the 1973 one. In the mid-1970s, state farms were created through the nationalization of private property. Modern private irrigation re-emerged with the liberalization of the economy in the 1990s.

Estimates of irrigated areas vary widely. In 1994, the water managed area was estimated at about 190 000 ha, in 2001 at nearly 290 000 ha (Table 8). The actually irrigated area was then estimated to be equal to the area equipped for irrigation with the following reasoning: on the one hand some irrigation schemes were not operating to their full potential or were not functional at all due to factors related to shortage of water, damaged structures and poor water management; on the other hand, farmers were extending canal networks in some modern irrigation projects and therefore irrigating more land than was reportedly equipped for irrigation.


In 2004, the water managed area was estimated at 510 000 ha, of which 175 300 ha estimated to be full-control irrigation. However, a research estimated that about 30 percent of the command area was not operating at that time (IWMI, 2010). In 2015, the area equipped for full-control irrigation is estimated at 658 340 ha. The area equipped for community spate irrigation is estimated at around 200 000 ha, giving a total area equipped for irrigation of 858 340 ha. In addition around 1 100 000 ha was estimated to be cultivated by small farmers using temporary structures. Thus, in total around 1 958 000 ha (Table 9 and Figure 2) is considered to be water managed in 2014/15 (NPC, 2015).





Harvested irrigated crops reported by the Central Statistics Agency (CSA) cover 327 036 ha for private holdings in 2014/15 (148 132 ha in Belg season and 178 904 ha in Meher season) (CSA, 2015b and 2015c) and there is no precision of the irrigated crops area in the census dedicated to medium and large commercial farms, although most of them seem to practice it.

Spate irrigation is practiced both in the midlands and lowlands. Despite few patches practised for some decades, most of the spate irrigation has been developed relatively recently, especially in arid areas, such as in East Tigray, Somali, Oromia, Dire Dawa, SNNP (Southern Nations, nationalities and Peoples), Afar and Amhara regions. Spate irrigation development concerns between 100 000 and 200 000 ha. Spate irrigation was actually done on 140 000 ha in 2008 (Spate Irrigation Network, 2011).

About 1 240 ha of vegetables are irrigated around Addis Ababa using wastewater or the Akaki river receiving most of the wastewater produced in the city (WeldeSilassie, 2011; UNEP, 2014).

Irrigation schemes in Ethiopia are distinguished by:

  • Irrigation technologies:
    • Traditional: often small-scale and community-based, carried out by farmers on their own initiative, including in peri-urban areas particularly in Addis Ababa and Bahir Dar, for the production of vegetables for the local market. Traditional river diversions are physical structures built with local materials. The diversion structures are normally destroyed by floods during the rainy seasons and have to be built each year.
    • Modern: any size or ownership.
  • Size:
    • Small: less than 200 ha, often community-based and traditional, but can be modern. Includes wells, spate, river diversion.
    • Medium: between 200 and 3 000 ha, community-based or public. Examples include Sille, Hare and Ziway irrigation schemes.
    • Large: more than 3 000 ha, commercial or public, such as Wonji-Shoa sugarcane plantation, Methara, Nura Era and Fincha. Similarly to medium, they are mainly supplied by surface water stored in dams, with some pilot areas using groundwater.
  • Ownership 1:
    • Smallholders, for subsistence or local market.
    • Commercial.
  • Ownership 2:
    • Community-based.
    • Private.
    • Public: constructed in the 1960-70s either as private farms or joint venture, owned and operated by public enterprises. About 73 percent of the public irrigation schemes are located along the Awash river. Public schemes are medium or large.

For census purposes, the CSA only distinguishes between small private holdings on the one hand and medium and large commercial farms on the other hand. Most of the water used for irrigation is surface water, while groundwater use just started on pilot basis in East Amhara. Surface irrigation methods dominate throughout, predominantly furrow irrigation for cotton and wheat and basin irrigation for commercial fruits such as bananas. Sprinkler irrigation is being practiced on about 10 000 ha area for sugarcane on Fincha State Farm. Similarly, it is being used in limited areas of eastern Amhara and southern Tigray in some smallholders’ schemes and some private farms in the Rift Valley. Most of the earlier schemes were pump-irrigation projects, but later gravity irrigation schemes were introduced. Some private farms had installed hydraulic rams on the banks of the Awash river to lift up water (MoA, 2011).

Finally, rainwater harvesting, also sometimes named micro-irrigation in national documents, is well developed in the country, although estimates vary again widely: from 40 000 to 800 000 ha, certainly encompassing the basin catchment for the latter figure. A recurrent estimate of 128 000 ha seems more probable.

Role of irrigation in agricultural production, economy and society

Irrigated agriculture contributed less than 3 percent of the total cereal production in the early 2000s. By 2010, it contributed 9 percent of the agricultural GDP and 3.7 percent of the overall GDP. Over 1.2 million private holders practiced irrigated agriculture in 2014/15 in the Meher season–main rainy season–and over 0.8 million in the Belg season–small rainy season.

Irrigated crops in medium and large scale commercial farms are mostly cash crops, in particular cotton and sugarcane, but fruits and vegetables were also introduced. The Wonji/Shoa, Metehara and Finchaa schemes grow sugarcane (total 21 425 ha in 2005/06), the Amibara scheme cotton (6 448 ha in 2005/06), and Upper Awash scheme fruits and vegetables (6 017 ha in 2005/06) (MoA, 2011). Large-scale irrigation schemes are under full irrigation throughout the year (IWMI, 2009).

In small-scale irrigation schemes, irrigated crops are more diversified, but for the country as a whole the main irrigated crops are cereals–maize, wheat, barley or teff–, pulses, vegetables, root crops, fruits and fiber crops (cotton). Smallholder irrigators generally prefer subsistence crops rather than cash crops (MoA, 2011) and use irrigation to complement rainfed agriculture, i.e. supplementary irrigation. However, during the dry season, they use full irrigation to get additional income (IWMI, 2009).

Status and evolution of drainage systems

Drainage is as important as irrigation, particularly in the highlands of Ethiopia. However, except in irrigated lands, drainage is not given the required attention in rainfed agriculture where farmers construct traditional drain ditches commonly diagonal to the main slope of the farmlands. Because of irregularity in cross-sections and longitudinal slopes as well as inadequate capacities, the drains are usually converted to gullies if the same drains are adopted year after year. To avoid this happening, drain lines are changed every year. Designs of small-scale irrigation schemes incorporate drainage systems but these are not properly implemented. The drainage system used in the country is the surface drainage system (gravity drainage). The construction of subsurface drainage systems was started for one large-scale irrigation scheme in the Awash Valley for salinity control, but was discontinued.

Women and irrigation

Women and children are the main responsible for fetching water, even when it requires traveling long distances, up to half a day (UNESCO-WWAP, 2004). In agriculture, out of the 15 million farm holders in 2011, only 2.7 million were women (CSA, 2011). Both women and men can register for land ownership, but women do not equally get access to farm plots despite the fact that they undertake up to 75 percent of farm labour and produce 70 percent of the households’ food (USAID, 2016). Women also have less access to extension services and agricultural inputs, including irrigation, as well as a lower bargaining power for changing water schedules. Hence, even with water rights, their crops fail more often just because water was not available on time (CDR, 2011). As a result, both in rainfed and irrigated agriculture, they produce up to 35 percent less than men (USAID, 2016) and female-headed households have a weaker position. Finally, the cultural perception that women are unable to plough in some communities may explain partly their lower access to land and inputs (CDR, 2011).

     
   
   
             

^ go to top ^

       Quote as: FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on [yyyy/mm/dd].
      © FAO, 2016   |   Questions or feedback?    [email protected]
       Your access to AQUASTAT and use of any of its information or data is subject to the terms and conditions laid down in the User Agreement.