Español || Français
      AQUASTAT Home        About AQUASTAT     FAO Water    Statistics at FAO

Featured products

Main Database
Dams
Global map of irrigation areas
Irrigation water use
Water and gender
Climate info tool
Institutions

Geographical entities

Countries, regions, river basins

Themes

Water resources
Water uses
Irrigation and drainage
Wastewater
Institutional framework
Other themes

Information type

Datasets
Publications
Summary tables
Maps and spatial data
Glossary

Info for the media

Did you know...?
Visualizations and infographics
SDG Target 6.4
KWIP
UNW Briefs
     

Read the full profile

Jordan

Irrigation and drainage

Evolution of irrigation development

Land suitable for irrigated cultivation is estimated at around 840 000 ha. However, taking into consideration available water resources, the irrigation potential is about 85 000 ha, including the area currently irrigated. The total area equipped for irrigation is estimated at 78 860 ha (2004) (Table 4).



Although irrigation has been reported in Jordan for a very long time, particularly in the JRV, intensive irrigation projects have been implemented since 1958, when the Government decided to divert part of the Yarmouk River water and constructed the East Ghor Canal (later named King Abdullah Canal or KAC). The King Talal Dam on the Zarqa River also diverts the water into the KAC. The canal was 70 km long in 1961 and was extended three times between 1969 and 1987 to reach a total length of 110.5 km. The construction of dams on the Side Wadis and the diversion of the flows from other wadis allowed the development of irrigation over a large area. At the same time, wells were drilled in the Jordan valley to abstract groundwater, not only for domestic purposes but also for irrigation.

Irrigation projects from surface water resources are mainly located in the JRV and the Side Wadis linked with the Jordan River Basin. Irrigation schemes in the JRV have been constructed, restored, operated and maintained by the government. In the first projects in the north, concrete-lined canals were constructed equipped with all irrigation structures to convey and distribute irrigation water on a volumetric basis. Additional irrigation schemes were carried out during the 1970s and 1980s following the extension of the KAC and through construction of dams and diversion of side wadis springs and streams. From the 1990s onwards, the open canal irrigation schemes were converted to pressurized irrigation systems.

Irrigated land in the JRV is divided into farm units from 3 to 5 ha in size, totalling 10 916 in number. By law the farm units cannot be subdivided and the Jordan Valley Authority (JVA) regulations do not allow farmers to own more than 20 ha. Farm units receive a flow from 4 to 8 litres/sec under 2.6 to 3.6 atmospheres pressure, so that farmers apply sprinkler or localized irrigation methods on their farm units. In 2006, the area equipped for irrigation in the JRV reached 35 360 ha, which represents 83 percent of the total irrigation potential area in the JRV. Part of the equipped area, however, is not yet functional. In fact, 6 000 ha in the Karamah irrigation district (14.5 km irrigation project) consisting of 1 558 farm units are still not distributed among farmers due to water shortage in the valley. About 900 ha (307 farm units) are still under construction and will be operational in 2007.

Irrigation is also reported in the Highlands, mainly dependent on groundwater resources by constructing very deep wells. The Water Master Plan, prepared in 1977, enabled Jordan to locate the groundwater basins. The government encourages the private sector to invest in irrigation from groundwater resources. The Agricultural Credit Corporation (ACC) provides farmers with soft loans to drill tube wells, install diesel pumps, reclaim and level the land, and put it under sprinkler or localized irrigation. In the mid 1980s large agricultural companies were allowed to invest in irrigation in the southeast of the country, using fossil groundwater. The Disi Irrigation Project, one of the largest schemes in Jordan covering a total area of 3 000 ha, is supplied with fossil groundwater. The total area equipped for irrigation from groundwater resources owned and operated by the private sector reached 36 000 ha for small farmers and 6 000 ha for large agricultural companies.

Streams and springs in the Side Wadis have been used for irrigation since the 1940s. A total area of about 1 500 ha is equipped for irrigation.

The techniques used by farmers changed gradually from surface irrigation (32 and 18 percent in 1991 and 2004 respectively) to localized irrigation (60 and 81 percent in 1991 and 2004 respectively) (Figure 3). In 2004, 53 percent of the area under irrigation used groundwater, 31 percent surface water and 16 percent treated wastewater mixed with surface water (Figure 4). In 2004, the total number of greenhouses was 23 779 in the JRV, with a total area of 1 189 ha and 11 075 ha in the Highlands, with a total area of 554 ha. Small schemes (< 100 ha) cover 47 percent of total equipped area for irrigation, medium size schemes (100–1 000 ha) 8 percent and large schemes (>1 000 ha) 45 percent (Figure 5).






Role of irrigation in agricultural production, the economy and society

Irrigated crops in Jordan are field crops (cereals), vegetables (mainly tomatoes, cucumber, squash, eggplants, pepper, cabbage, cauliflower and potatoes) and trees (citrus, bananas, olives and vineyards). Field crop production comes mostly from rainfed areas and varies in quantity from year to year due to the amount and distribution of rain. Vegetables, the production of which is higher than the needs of local markets, come mostly from irrigated areas (Table 5). Citrus and bananas are grown only in the Jordan Valley. In 2004, about 91 percent of the area equipped for irrigation, or 72 009 ha, was actually irrigated and the total harvested irrigated area was 99 029 ha (71 percent in the JRV and 29 percent in the Highlands including Side Wadis) (Table 4 and Figure 6). Vegetables covered 42 percent of the harvested irrigated area and represented 69 percent of the total quantity of agricultural production.




Crop water requirements are evaluated at around 4 000 m3/ha for field crops (wheat and barley), 3 000–6 000 m3/ha for vegetables, 7 000 m3/ha for olives and grapes, 10 000–12 000 m3/ha for citrus and date palms and 18 000 m3/ha for bananas. The introduction of modern irrigation and agricultural techniques led to a noticeable increase in agricultural yield per unit of irrigated land and unit of water. The yield of tomatoes increased from 10 tonnes/ha to 60 tonnes/ha in open fields under drip irrigation and up to 200 tonnes/ha in the greenhouses. Cucumber gave 40 tonnes/ha in open fields and 120 tonnes/ha inside the greenhouses. In the JRV, bananas, citrus and grapes yields are around 8, 20 and 28 tonnes/ha respectively under improved water management.

Water charges in the JRV irrigation schemes have increased many times. The latest tariff takes into consideration the crop water requirements, which are highest for trees, mainly bananas and citrus. The average collected rate is around US$ 21 (15 Jordan Dinars) per 1 000 m3. However, in order to recover the full operation and maintenance cost, the average water charge value should be raised to US$ 38 per 1 000 m3 of water. In the Highlands the average cost of irrigation water is between US$ 70 to 85 per 1 000 m3 and is increasing due to the rise in the cost of fuel.

The government and the private sector work together to encourage farmers to adopt localized and sprinkler irrigation methods. Around 85 and 90 percent of the areas equipped for irrigation of the JRV and Highlands respectively are using localized irrigation methods. In the southeast fossil basins, 1 000 ha are irrigated with central pivot sprinkler systems. The on-farm installation cost of localized and sprinkler irrigation is US$ 1 286/ha and US$ 1 429/ha respectively. The cost of surface irrigation development in public and private schemes is US$ 5 250/ha and US$ 4 300/ha respectively while the cost of operation and maintenance (O&M) is US$ 187/ha and US$ 860/ha per year respectively.

Agricultural water management activities are undertaken by men. Operation and maintenance of the drip, bubbler and sprinkler irrigation systems is carried out by male workers and farmers, who are trained by private irrigation companies. Women play a role in harvesting, grading, packing and loading of vegetables and fruits. They are also involved in agricultural processing plants, for example in the JRV tomatoes are processed by women from the surrounding communities.

Status and evolution of drainage systems

In the JRV, open drains were constructed in parallel with the irrigation infrastructure in the irrigation schemes. Subsurface drains were constructed in many farm units facing waterlogging and salinity of top soils. In 1992, drainage existed on about 4 000 ha of the irrigated area, mainly open drains, and all by gravity. In 2004, the total area equipped for irrigation having a drainage system was around 10 500 ha in irrigation schemes north of the Dead Sea. Southern Ghor irrigation schemes contain open main drains and plans are under way to construct subsurface drains in the farm units affected by the salinity of Dead Sea water on around 5 400 ha. The cost of drainage development in the JRV schemes is US$ 9 520/ha.

     
   
   
             

^ go to top ^

       Quote as: FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on [yyyy/mm/dd].
      © FAO, 2016   |   Questions or feedback?    [email protected]
       Your access to AQUASTAT and use of any of its information or data is subject to the terms and conditions laid down in the User Agreement.