Espa˝ol || Franšais
      AQUASTAT Home        About AQUASTAT     FAO Water    Statistics at FAO

Featured products

Main Database
Global map of irrigation areas
Irrigation water use
Water and gender
Climate info tool

Geographical entities

Countries, regions, river basins


Water resources
Water uses
Irrigation and drainage
Institutional framework
Other themes

Information type

Summary tables
Maps and spatial data

Info for the media

Did you know...?
Visualizations and infographics
SDG Target 6.4
UNW Briefs

Read the full profile

Occupied Palestinian Territory

Water resources

The water resources in the Occupied Palestinian Territory include mainly groundwater and a little bit of surface water. The groundwater regime in the five agro-ecological zones of the territory is a multiaquifer and subaquifer system that comprises several rock formations from Cretaceous to Recent age. Most of the formations are composed of carbonate rocks, mainly limestone, dolomite, chalk, marl and clay. The various formations occur in a series of aquifers and aquacultures, in which groundwater is found in shallow, intermediate and deep aquifers. These Rock formations outcrop (i.e., expose at the surface) throughout the West Bank constituting recharge areas for this hydrological system. In addition, there is another local aquifer in the Jordan Valley area, which comprises the alluvial deposits of the Pleistocene age. The main Gaza Aquifer is a continuation of the shallow sandy/sandstone coastal aquifer of Israel (shared aquifer) which is of the Pliocene-Pleistocene geological age. This aquifer is divided into three subaquifers that overlie each other and are separated by impervious and/or semi-impervious silty clayey layers. The base of the aquifer consists of impermeable marly clay (Saqiah formation) of Pliocene age. The thickness of the coastal aquifer varies throughout the region gradually increasing from about 5 to 60 m in the east to about 10 to 160 m in the west along the coast. The aquifer is highly permeable with a transmissivity of about 1 000 m2/day and an average porosity of 25 percent. The only permanent river which can be used as a source of surface water in the West Bank is the Jordan River, which flows from north to south from an elevation of 2 200 m above mean sea level at Mount Hermon to about 395 m below mean sea level at the Dead Sea. The Jordan River flows along a straight distance of about 140 km with a river length of about 350 km due to its tortuous path. The slope of the land and accordingly that of the river bed is slight and directed toward the south. Much steeper gradients than the Jordan River itself were found in all of its tributaries. The catchment area of the Jordan River and Dead Sea basin comprises some 40 650 km2 (Isaac, 1999).

The total internal renewable groundwater resources in the Occupied Palestinian Territory are estimated at 740 million m3/year of which 694 million m3 is produced in the West Bank and 46 million m3 in the Gaza Strip. The total internal renewable surface water resources are estimated at 72 million m3/year in the West Bank whereas it is considered negligible in the Gaza Strip. The overlap between surface water and groundwater is considered to be zero, giving a total of 812 million m3/year for the total internal renewable water resources (IRWR) in the Occupied Palestinian Territory. As far as external renewable water resources are concerned, the total flow of 1 578 million m3/year from the Jordan River is unavailable because it involves brackish water and moreover this water is denied to the Palestinians. About 15 million m3/year of surface water and 10 million m3/year of groundwater enter from Israel into the Gaza Strip. This makes the total actual renewable water resources in the Occupied Palestinian Territory 837 million m3/year, of which 766 million m3/year in the West Bank and 71 million m3/year in the Gaza Strip (Table 4 and Table 5). Surface water and groundwater outflow from the West Bank to Israel are estimated at 20 and 325 million m3/year respectively.

In the Gaza Strip overexploitation of the aquifer has already resulted in seawater intrusion. In the West Bank both well and spring water are available. The quality of the groundwater, particularly in the Gaza Strip and to a much lesser extent in the West Bank, has drastically deteriorated over the last twenty years due to over-pumping and subsequent salinization.

The water conveyance systems from springs to farms (often several kilometres downstream) consist of open earthen or lined canals and earthen buffer pools (usually plastic lined), the bad conditions of which are responsible for substantial losses of water through seepage and evaporation. These losses are estimated at about 15 million m3/year. On the other hand water conveyance systems from wells to farms are made of closed systems and water losses at farm gate are usually minimal (FAO, 2001).

Due to lack of authority and Israeli restrictions, no dams were built on wadis to collect natural runoff from watersheds including urban runoff. With the increase of urbanization in the Occupied Palestinian Territory, more runoff is observed during winter months. There is a good opportunity to build dams on the major wadis of the West Bank such as El-Faria, El-Auja and Qilt. These wadis drain significant runoff amounts to the Dead Sea basin. Initial investigations showed a possibility of utilizing 13 million m3/year of runoff water by constructing dams on these wadis. Due to their location and to the water quality, these dams could be utilized for agricultural purposes. Another importance for these dams would be to store water from the springs which are located along these wadis during winter months when most of the discharge of these springs is lost due to a lack of storage facilities. Israeli Authorities constructed a storage dam on the El-Faria wadi east of Jiftlik after signing the Oslo Accords. This construction shows the feasibility of dam construction on such wadis. The other option for rainwater harvesting is utilizing small-scale storage facilities such as ponds and cisterns. There are many villages in the West Bank which still utilize cisterns for domestic purposes. Due to lack of quality monitoring for these cisterns, it is recommended that water be supplied through pipe networks for domestic purposes for these villages. Cisterns could be converted for agricultural use through small-scale home gardening. In recent years and due to water restrictions, many farmers have built ponds to collect runoff water from the roofs of greenhouses. This practice has proved to be feasible and economical and helps the sustainability of irrigated agriculture.

There are only a few wastewater treatment plants the West Bank (Al-Bireh, Ramallah, Tulkarm and Hebron), and not a single one is working properly. Thus, those plants are under reconstruction, rehabilitation, and/or expansion. There are three locations with wastewater treatment facilities in the Gaza Strip: Gaza town, Jabalia and Rafah. Reused treated wastewater in the Gaza Strip accounts for 10 million m3.

Brackish water is available in Gaza Strip due to the low quality of groundwater there and at brackish water springs in the West Bank such as the El-Fashka spring. Brackish water could be utilized to irrigate crops which can tolerate salinity. Desalination and mixing with fresh water are also alternatives for brackish water use. However, desalination costs are still too high for agriculture to pay for them. Currently, some brackish water from irrigation wells in the Ghor area is being mixed with spring water to allow its use in agriculture.


^ go to top ^

       Quote as: FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on [yyyy/mm/dd].
      © FAO, 2016   |   Questions or feedback?    [email protected]
       Your access to AQUASTAT and use of any of its information or data is subject to the terms and conditions laid down in the User Agreement.