Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua
A case study in participatory, sustainable land management impact monitoring
A study using a participatory research approach and simple field techniques found significant differences in agroecological resistance between plots on “conventional” and “sustainable” farms in Nicaragua after Hurricane Mitch.
On average, agroecological plots on sustainable farms had more topsoil, higher field moisture, more vegetation, less erosion and lower economic losses after the hurricane than control plots on conventional farms. The differences in favor of agroecological plots tended to increase with increasing levels of storm intensity, increasing slope and years under agroecological practices, though the patterns of resistance suggested complex interactions and thresholds. For some indicators agroecological resistance collapsed under extreme stress. With the help of 19 non-governmental organizations (NGOs) and 45 farmer–technician teams, 833 farmers measured key agroecological indicators on 880 plots paired under the same topographical conditions. These paired observations covered 181 communities of smallholders from southern to northern Nicaragua. The broad geographical coverage took into account the diversity of ecological conditions, a variety of practices common to sustainable agriculture in Nicaragua, and moderate, high and extreme levels of hurricane impact. This coverage, and the massive mobilization of farmer–technician field research teams, was made possible by the existence of the Movimiento Campesino a Campesino (MCAC) (farmer-to-farmer movement), a widespread smallholders’ network for sustainable land management. An approach for measuring agroecological resistance is introduced, and it is suggested that comparatively higher levels of agroecological resistance are an indication of lower vulnerability and higher sustainability.
However, the effectiveness of practices appears to be bounded by a combination of steep slopes, maintenance and design of soil conservation structures, and extremely high storm intensity. The study concludes that the participatory research can contribute significantly to the monitoring and development of sustainable land management systems (SLM) among smallholders, and recommends a sustainable, participatory approach to agricultural reconstruction following natural disasters.