GLOSARIO

1 Klerkx, L., Jakku, E. y Labarthe, P. 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90–91: 100315. https://doi.org/10.1016/j.njas.2019.100315

2 Schroeder, K., Lampietti, J. y Elabed, G. 2021. What’s cooking: Digital transformation of the agrifood system. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/35216

3 Birner, R., Daum, T. y Pray, C. 2021. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Applied Economic Perspectives and Policy, 43(4): 1260–1285. https://doi.org/10.1002/aepp.13145

4 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf

5 FAO. 2016. Sustainable agricultural mechanization. Nota informativa. Roma. www.fao.org/3/i6167e/i6167e.pdf

6 FAO y Comisión de la Unión Africana (CUA). 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf

7 FAO. 2021. El estado mundial de la agricultura y la alimentación 2021. Lograr que los sistemas agroalimentarios sean más resilientes a las perturbaciones y tensiones. Roma. https://doi.org/10.4060/cb4476es

8 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

9 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

10 FAO. 2017. Conservation agriculture. Hoja de datos. Roma. www.fao.org/3/i7480en/I7480EN.pdf

11 Sociedad internacional de agricultura de precisión (ISPA). 2021. Precision Ag Definition. En: ISPA. Monticello, IL (Estados Unidos). [Consultado el 20 de diciembre de 2021]. www.ispag.org/about/definition

12 Lowenberg-DeBoer, J., Huang, I.Y., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5

13 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.

14 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.

Capítulo 1

1 ISPA. 2021. Precision Ag Definition. En: ISPA. Monticello, IL (Estados Unidos). [Consultado el 20 de diciembre de 2021]. www.ispag.org/about/definition

2 Mazoyer, M. y Roudart, L. 2006. A history of world agriculture: From the Neolithic Age to the current crisis. Nueva York, NYU Press.

3 Pingali, P. 2007. Chapter 54 Agricultural mechanization: Adoption patterns and economic impact. En: R. Evenson y P. Pingali, (coords.). Handbook of agricultural economics, págs. 2779-2805. Amsterdam, Elsevier. https://doi.org/10.1016/S1574-0072(06)03054-4

4 Hurt, R.D. 1982. American farm tools: From hand power to steam power. Sunflower University Press. Manhattan, KS (Estados Unidos).

5 Daum, T., Huffman, W. y Birner, R. 2018. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Economics Working Paper. Ames (Estados Unidos), Department of Economics, Iowa State University. https://lib.dr.iastate.edu/econ_workingpapers/47

6 Johnson, D.G. 2000. Population, food, and knowledge. The American Economic Review, 90(1): 1–14. www.jstor.org/stable/117278

7 Michaels, G., Rauch, F. y Redding, S.J. 2012. Urbanization and structural transformation. The Quarterly Journal of Economics, 127(2): 535–586. www.jstor.org/stable/23251993

8 Gollin, D., Parente, S. y Rogerson, R. 2002. The role of agriculture in development. The American Economic Review, 92(2): 160–164. www.jstor.org/stable/3083394

9 Lewis, W.A. 1954. Economic development with unlimited supplies of labour. The Manchester School, 22(2): 139–191. https://doi.org/10.1111/j.1467-9957.1954.tb00021.x

10 USDA Economic Research Service. 2021. Agriculture and its related industries provide 10.3 percent of U.S. employment. En: USDA. Washington D. C. [Consultado el 22 de abril de 2022]. www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58282

11 Lowenberg-DeBoer, J. y Erickson, B. 2019. Setting the record straight on precision agriculture adoption. Agronomy Journal, 111(4): 1552–1569. https://doi.org/10.2134/agronj2018.12.0779

12 Kumar, P., Lorek, T., Olsson, T.C., Sackley, N., Schmalzer, S. y Laveaga, G.S. 2017. Roundtable: New Narratives of the Green Revolution. Agricultural History, 91(3): 397–422. https://www.academia.edu/36689104/Roundtable_New_Narratives_of_the_Green_Revolution_Agricultural_History_91_3_Summer_2017_pp_397_422

13 Shiva, V. 1991. The violence of the green revolution: Third World agriculture, ecology and politics. Londres, Zed Books.

14 FAO. 2016. Sustainable agricultural mechanization. Hoja de datos. Roma. www.fao.org/3/i6167e/i6167e.pdf

15 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf

16 Gan, H. y Lee, W.S. 2018. Development of a navigation system for a smart farm. IFAC-PapersOnLine, 51(17): 1–4. https://doi.org/10.1016/j.ifacol.2018.08.051

17 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5

18 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital technologies in agriculture and rural areas – Status report. Roma, FAO. www.fao.org/3/ca4985en/CA4985EN.pdf

19 FAO. 2022. FAOSTAT: Indicadores de empleo: Agricultura. En: FAO. Roma. [Consultado el 6 de febrero de 2022]. https://www.fao.org/faostat/es/#data/OEA

20 Charlton, D., Hill, A.E. y Taylor, E.J. 2022. Automation and social impacts: winners and losers. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-09 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

21 Silva, J.V., Baudron, F., Reidsma, P. y Giller, K.E. 2019. Is labour a major determinant of yield gaps in sub-Saharan Africa? A study of cereal-based production systems in Southern Ethiopia. Agricultural Systems, 174: 39–51. https://doi.org/10.1016/j.agsy.2019.04.009

22 Baudron, F., Misiko, M., Getnet, B., Nazare, R., Sariah, J. y Kaumbutho, P. 2019. A farm-level assessment of labor and mechanization in Eastern and Southern Africa. Agronomy for Sustainable Development, 39(2): 17. https://doi.org/10.1007/s13593-019-0563-5

23 Diao, X., Cossar, F., Houssou, N. y Kolavalli, S. 2014. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy, 48: 168–181. https://doi.org/10.1016/j.foodpol.2014.05.013

24 Fuglie, K., Gautam, M., Goyal, A. y Maloney, W.F. 2019. Harvesting prosperity: Technology and productivity growth in agriculture. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/32350

25 Lowder, S.K., Sánchez, M.V. y Bertini, R. 2019. Farms, family farms, farmland distribution and farm labour: What do we know today? Documento de trabajo n.º 19-08 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO. www.fao.org/3/ca7036en/ca7036en.pdf

26 Takeshima, H. y Vos, R. 2022. Agricultural mechanisation and child labour in developing countries. Estudio de antecedentes. Roma, FAO. www.fao.org/3/cb8550en/cb8550en.pdf

27 Johnston, D., Stevano, S., Malapit, H.J., Hull, E. y Kadiyala, S. 2018. Review: Time use as an explanation for the agri-nutrition disconnect: Evidence from rural areas in low and middle-income countries. Food Policy, 76: 8–18. https://doi.org/10.1016/j.foodpol.2017.12.011

28 Daum, T. y Birner, R. 2021. The forgotten agriculture-nutrition link: farm technologies and human energy requirements. Food Security. https://doi.org/10.1007/s12571-021-01240-1

29 Ogwuike, P., Rodenburg, J., Diagne, A., Agboh-Noameshie, A.R. y Amovin-Assagba, E. 2014. Weed management in upland rice in sub-Saharan Africa: impact on labor and crop productivity. Food Security, 6(3): 327–337. https://doi.org/10.1007/s12571-014-0351-7

30 Castro, Á., Pereira, J.M., Amiama, C. y Bueno, J. 2015. Typologies of dairy farms with automatic milking system in northwest Spain and farmers’ satisfaction. Italian Journal of Animal Science, 14(2): 3559. https://doi.org/10.4081/ijas.2015.3559

31 Hansen, B.G. y Stræte, E.P. 2020. Dairy farmers’ job satisfaction and the influence of automatic milking systems. NJAS - Wageningen Journal of Life Sciences, 92(1): 1–13. https://doi.org/10.1016/j.njas.2020.100328

32 Taylor, J.E. y Charlton, D. 2018. The farm labor problem: A global perspective. Amsterdam, Elsevier Academic Press.

33 Daum, T. y Kirui, O. 2021. Mechanization along the value chain. En: J. von Braun, A. Admassie, S. Hendriks, G. Tadesse y H. Baumüller, (coords.). From potentials to reality: Transforming Africa’s food production. Peter Lang, Berna.

34 Maucorps, A., Münch, A., Brkanovic, S., Schuh, B., Dwyer, J., Vigani, M., Khafagy, A. et al. 2019. Research for AGRI committee - The EU farming employment: current challenges and future prospects. Estudio y Anexo. En: Think Tank – European Parliament. [Consultado el 17 de febrero de 2022]. www.europarl.europa.eu/thinktank/en/document/IPOL_STU(2019)629209

35 National Farmers’ Union. 2019. The future of food 2040. Stoneleigh (Reino Unido). www.nfuonline.com/archive?treeid=116020

36 Charlton, D., Taylor, J.E., Vougioukas, S. y Rutledge, Z. 2019. Can wages rise quickly enough to keep workers in the fields? Choices, 34(2): 1–7. www.choicesmagazine.org/choices-magazine/submitted-articles/can-wages-rise-quickly-enough-to-keep-workers-in-the-fields

37 Ali, I., Nagalingam, S. y Gurd, B. 2017. Building resilience in SMEs of perishable product supply chains: enablers, barriers and risks. Production Planning & Control, 28(15): 1236–1250. https://doi.org/10.1080/09537287.2017.1362487

38 Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D. y Fotopoulos, C. 2014. Firm size and sustainable performance in food supply chains: Insights from Greek SMEs. International Journal of Production Economics, 152: 112–130. https://doi.org/10.1016/j.ijpe.2013.12.029

39 Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L. y Daszak, P. 2008. Global trends in emerging infectious diseases. Nature, 451: 990–993. https://doi.org/10.1038/nature06536

40 Centro para la Mecanización Agrícola Sostenible (CSAM) y Comisión Económica y Social para Asia y el Pacífico (CESPAP). 2020. Mechanization solutions for improved livestock management and prevention & control of zoonotic diseases. Beijing. www.un-csam.org/sites/default/files/2021-01/ENG.pdf

41 Ali, I. y Aboelmaged, M.G.S. 2021. Implementation of supply chain 4.0 in the food and beverage industry: perceived drivers and barriers. International Journal of Productivity and Performance Management.

42 Daum, T. 2021. Farm robots: ecological utopia or dystopia? Trends in Ecology & Evolution, 36(9): 774–777. https://doi.org/10.1016/j.tree.2021.06.002

43 Streed, A., Tomlinson, B., Kantar, M. y Raghavan, B. 2021. How sustainable is the smart farm? Paper presented at LIMITS 2021, 14-15 de junio de 2021. https://computingwithinlimits.org/2021/papers/limits21-streed.pdf

44 Schillings, J., Bennett, R. y Rose, D.C. 2021. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Frontiers in Animal Science, 2: 639678. https://doi.org/10.3389/fanim.2021.639678

45 Berckmans, D. 2014. Precision livestock farming technologies for welfare management in intensive livestock systems. Scientific and Technical Review – OIE, 33(1): 189–196.

46 Werkheiser, I. 2018. Precision livestock farming and farmers’ duties to livestock. Journal of Agricultural and Environmental Ethics, 31: 181–195. https://doi.org/10.1007/s10806-018-9720-0

47 Bos, J.M., Bovenkerk, B., Feindt, P.H. y van Dam, Y.K. 2018. The quantified animal: Precision livestock farming and the ethical implications of objectification. Food Ethics, 2(1): 77–92. https://doi.org/10.1007/s41055-018-00029-x

48 Miles, C. 2019. The combine will tell the truth: On precision agriculture and algorithmic rationality. Big Data & Society, 6(1): 2053951719849444.

49 Duncan, E., Glaros, A., Ross, D.Z. y Nost, E. 2021. New but for whom? Discourses of innovation in precision agriculture. Agriculture and Human Values, 38: 1181–1199. https://doi.org/10.1007/s10460-021-10244-8

50 Wiseman, L., Sanderson, J., Zhang, A. y Jakku, E. 2019. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS - Wageningen Journal of Life Sciences, 90–91: 100301. https://doi.org/10.1016/j.njas.2019.04.007

51 Murray, U., Gebremedhin, Z., Brychkova, G. y Spillane, C. 2016. Smallholder farmers and climate smart agriculture: Technology and labor-productivity constraints amongst women smallholders in Malawi. Gender, Technology and Development, 20(2): 117–148. https://doi.org/10.1177/0971852416640639

52 Conferencia de las Naciones Unidas sobre Comercio y Desarrollo (UNCTAD). 2020. Teaching Material on Trade and Gender Linkages: The Gender Impact of Technological Upgrading in Agriculture. Nueva York, Naciones Unidas. https://unctad.org/system/files/official-document/ditc2020d1.pdf

53 FAO. 2019. Youth employment: Youth agri-food policy assistance. Roma. www.fao.org/3/ca3854en/ca3854en.pdf

54 Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P. y Dewhurst, M. 2017. A future that works: automation, employment, and productivity. Nueva York, McKinsey Global Institute. www.mckinsey.com/~/media/mckinsey/featured%20insights/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Executive-summary.ashx

55 Autor, D.H. 2015. Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3): 3–30. www.aeaweb.org/articles?id=10.1257/jep.29.3.3

56 Organización Internacional del Trabajo (OIT). 2022. Agriculture; plantations; other rural sectors. En: OIT. Ginebra. [Consultado el 14 de febrero de 2022]. www.ilo.org/global/industries-and-sectors/agriculture-plantations-other-rural-sectors/lang--en/index.htm

57 Christiaensen, L., Rutledge, Z. y Taylor, J.E. 2021. Viewpoint: The future of work in agri-food. Food Policy, 99: 101963.

58 Daum, T. y Birner, R. 2020. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26: 100393. https://doi.org/10.1016/j.gfs.2020.100393

59 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf

60 Clarke, C. 2017. Farmers in Myanmar are using 3D printing to improve farming production. En: 3D Printing Industry. [Consultado el 24 de julio de 2022]. https://3dprintingindustry.com/?s=myanmar

61 Fielke, S.J., Botha, N., Reid, J., Gray, D., Blackett, P., Park, N. y Williams, T. 2018. Lessons for co-innovation in agricultural innovation systems: a multiple case study analysis and a conceptual model. The Journal of Agricultural Education and Extension, 24(1): 9–27. https://doi.org/10.1080/1389224X.2017.1394885

62 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.

63 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

64 Daum, T. 2022. Agricultural mechanization and sustainable agri-food system transformation in the Global South. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-11 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

65 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

66 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.

Capítulo 2

1 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.

2 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

3 White, W.J. 2001. An unsung hero: the farm tractor’s contribution to twentieth-century United States economic growth. The Journal of Economic History, 61(2): 493–496. https://EconPapers.repec.org/RePEc:cup:jechis:v:61:y:2001:i:02:p:493-496_23

4 Binswanger, H. 1986. Agricultural mechanization: a comparative historical perspective. The World Bank Research Observer, 1(1): 27–56. https://doi.org/10.1093/wbro/1.1.27

5 Mrema, G., Soni, P. y Rolle, R.S. 2015. A Regional Strategy for Sustainable Agricultural Mechanization. Sustainable Mechanization across Agri-Food Chains in Asia and the Pacific region. RAP Publication n.º 2014/24. Roma FAO. www.fao.org/documents/card/en/c/78c1b49f-b5c2-43b5-abdf-e63bb6955f4f

6 Diao, X., Takeshima, H. y Zhang, X. 2020. An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? Washington D. C., IFPRI (Instituto Internacional de Investigación sobre Políticas Alimentarias). https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134095

7 Daum, T. y Birner, R. 2020. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26: 100393. https://doi.org/10.1016/j.gfs.2020.100393

8 Kirui, O. 2019. The agricultural mechanization in Africa: Micro-level analysis of state drivers and effects. ZEF-Discussion Papers on Development Policy n.º 272. Universidad de Bonn. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3368103

9 FAO. 2021. FAOSTAT: Series de datos y archivos suspendidos: Maquinaria. En: FAO. Roma. [Consultado el 1 de diciembre de 2021]. https://www.fao.org/faostat/es/#data/RM

10 Comisión Económica para América Latina y el Caribe (CEPAL), FAO e Instituto Interamericano de Cooperación para la Agricultura (IICA). 2017. Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, IICA. https://www.fao.org/3/i8048es/I8048ES.pdf

11 Elverdin, P., Piñeiro, V. y Robles, M. 2018. Agricultural mechanization in Latin America. Documento de debate del IFPRI n.º 1740. Washington D. C., IFPRI.

12 Cramb, R. y Thepent, V. 2020. Evolution of agricultural mechanization in Thailand. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 165-201. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134091/filename/134311.pdf

13 Justice, S. y Biggs, S. 2020. The spread of smaller engines and markets in machinery services in rural areas of South Asia. Journal of Rural Studies, 73: 10–20. https://doi.org/10.1016/j.jrurstud.2019.11.013

14 Belton, B., Win, M.T., Zhang, X. y Filipski, M. 2021. The rapid rise of agricultural mechanization in Myanmar. Food Policy, 101: 102095. https://doi.org/10.1016/j.foodpol.2021.102095

15 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf

16 Pingali, P. 2007. Chapter 54 Agricultural mechanization: Adoption patterns and economic impact. En: R. Evenson y P. Pingali, (coords.). Handbook of agricultural economics, págs. 2779-2805. Amsterdam, Elsevier. https://doi.org/10.1016/S1574-0072(06)03054-4

17 Banco Mundial. 2022. Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). En: El Banco Mundial. Washington D. C. [Consultado el 5 de enero de 2022]. https://www.worldbank.org/en/programs/lsms/initiatives/lsms-ISA

18 Abeyratne, F. y Takeshima, H. 2020. The evolution of agricultural mechanization in Sri Lanka. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 139-163. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_04

19 Ahmed, M. y Takeshima, H. 2020. Evolution of agricultural mechanization in Bangladesh: The case of tractors for land preparation. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 235-261. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_07

20 Win, M.T., Belton, B. y Zhang, X. 2020. Myanmar’s rapid agricultural mechanization: Demand and supply evidence. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 263-284. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_08

21 Bhattarai, M., Singh, G., Takeshima, H. y Shekhawat, R.S. 2020. Farm machinery use and the agricultural machinery industries in India. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 97-138. Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134090

22 Antle, J.M. y Ray, S. 2020. Sustainable agricultural development: An economic perspective. Palgrave Studies in Agricultural Economics and Food Policy. Cham, Springer International Publishing. http://link.springer.com/10.1007/978-3-030-34599-0

23 Veimar da Silva, A., Michelle da Silva, C., Wagner, Soares Pessoa, W.R.L, Almeida Vaz, M., Matos de Oliveira, K. y Ribeiro dos Santos, F.S. 2018. Agricultural mechanization in small rural properties in the State of Piauí, Brazil. African Journal of Agricultural Research, 13(33): 1698–1707. https://academicjournals.org/journal/AJAR/article-full-text-pdf/7E9E9CA58112

24 Mrema, G.C., Kahan, D.G. y Agyei-Holmes, A. 2020. Agricultural mechanization in Tanzania. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 457-496. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_14

25 Takeshima, H. y Lawal, A. 2020. Evolution of agricultural mechanization in Nigeria. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 423-456. Washington D. C., IFPRI.

26 Herrero, M., Thornton, P.K., Mason-D’Croz, D., Palmer, J., Benton, T.G., Bodirsky, B.L., Bogard, J.R. et al. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1: 266–272. https://doi.org/10.1038/s43016-020-0074-1

27 Ehlers, M.-H., Finger, R., El Benni, N., Gocht, A., Sørensen, C.A.G., Gusset, M., Pfeifer et al. 2022. Scenarios for European agricultural policymaking in the era of digitalisation. Agricultural Systems, 196: 103318. https://doi.org/10.1016/j.agsy.2021.103318

28 Fleming, A., Jakku, E., Lim-Camacho, L., Taylor, B. y Thorburn, P. 2018. Is big data for big farming or for everyone? Perceptions in the Australian grains industry. Agronomy for Sustainable Development, 38: 24. https://doi.org/10.1007/s13593-018-0501-y

29 Sistema Mundial de Comunicaciones Móviles (GSM). 2020. The mobile economy 2020. www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf

30 Onukwue, A. 2022. Google’s subsea cable for Africa is making its first landing in Togo. En: Quartz Africa. Nueva York. [Consultado el 24 de julio de 2022]. https://qz.com/africa/2143897/googles-equiano-cable-is-making-its-first-landing-in-togo

31 Steinke, J., Ortiz-Crespo, B., van Etten, J. y Müller, A. 2022. Participatory design of digital innovation in agricultural research-for-development: insights from practice. Agricultural Systems, 195: 103313. https://doi.org/10.1016/j.agsy.2021.103313

32 McCampell, M. 2021. More than what meets the eye: Factors and processes that shape the design and use of digital agricultural advisory and decision support in Africa. Universidad de Wageningen, (Países Bajos). https://research.wur.nl/en/publications/388eb987-15f2-4fb0-b9c1-f0f6ff342e98

33 Tsan, M., Totapally, S., Hailu, M. y Addom, B. 2019. The digitalisation of African agriculture report 2018-2019. Wageninghen (Países Bajos). CTA (Centro Técnico de Cooperación Agrícola y Rural). www.cta.int/en/digitalisation-agriculture-africa

34 FAO y Unión Internacional de Telecomunicaciones (UIT). 2022. Status of digital agriculture in 47 sub-Saharan African countries. Roma. www.fao.org/3/cb7943en/cb7943en.pdf

35 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital technologies in agriculture and rural areas – Status report. Roma, FAO. www.fao.org/3/ca4985en/CA4985EN.pdf

36 Viet Nam News. 2021. Hà Nội aims to develop smart agriculture. En: Viêt Nam News. Hanói. [Consultado el 1 de mayo de 2022]. https://vietnamnews.vn/economy/1082482/ha-noi-aims-to-develop-smart-agriculture.html

37 Musoni, M. 2020. Smart farming in Rwanda – How farmers can increase crop yields through an IoT-based irrigation system. En: Digital Transformation Center. Kigali. [Consultado el 1 de mayo de 2022]. https://digicenter.rw/smart-farming-in-rwanda-with-an-iot-based-irrigation-system

38 GSMA. 2020. Digital agriculture maps: 2020 state of the sector in low and middle-income countries. Londres. www.gsma.com/r/wp-content/uploads/2020/09/GSMA-Agritech-Digital-Agriculture-Maps.pdf

39 FAO y Academia China de Agronomía (CAAS). 2021. Carbon neutral tea production in China – Three pilot case studies. Roma, FAO. www.fao.org/documents/card/en/c/cb4580en

40 Nyaga, J.M., Onyango, C.M., Wetterlind, J. y Söderström, M. 2021. Precision agriculture research in sub-Saharan Africa countries: a systematic map. Precision Agriculture, 22: 1217–1236. https://doi.org/10.1007/s11119-020-09780-w

41 Onyango, C.M., Nyaga, J.M., Wetterlind, J., Söderström, M. y Piikki, K. 2021. Precision agriculture for resource use efficiency in smallholder farming systems in sub-Saharan Africa: A systematic review. Sustainability, 13(3): 1158. https://doi.org/10.3390/su13031158

42 Instituto Africano de Nutrición Vegetal (APNI). 2020. Proceedings for the 1st African Conference on Precision Agriculture, Benguérir (Marruecos), 8–10 de diciembre de 2020. En: APNI. www.apni.net/2021/03/18/new-publication-proceedings-for-1st-african-conference-on-precision-agriculture

43 Witt, C. y Dobermann, A. 2002. A site-specific nutrient management approach for irrigated, lowland rice in Asia. Better Crops International, 16(1): 20–24. https://www.researchgate.net/publication/237258623_A_Site-Specific_Nutrient_Management_Approach_for_Irrigated_Lowland_Rice_in_Asia

44 Agrocares. 2022. Manage soil fertility: Informed fertilization decisions in the field. En: Agrocares. [Consultado el 24 de julio de 2022]. www.agrocares.com/soilcares

45 Lowenberg-DeBoer, J. y Erickson, B. 2019. Setting the record straight on precision agriculture adoption. Agronomy Journal, 111(4): 1552–1569. https://doi.org/10.2134/agronj2018.12.0779

46 Van Beek, C. 2020. Adoption level is the most underestimated factor in fertiliser recommendations. En: Agrocares. [Consultado el 24 de julio de 2022]. www.agrocares.com/wp-content/uploads/2020/10/whitepaper-christy-van-beek-1.pdf

47 GoMicro. 2022. Phone QC. En: GoMicro. Singapur. [Consultado el 1 de mayo de 2022]. www.gomicro.co

48 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

49 UIT. 2020. Measuring digital development: Facts and figures 2020. Ginebra, UIT. www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf

50 Hanton, J.P. y Leach, H.A. 1974. Electronic livestock identification system. Patente estadounidense 4,262,632. https://patentimages.storage.googleapis.com/6c/49/f1/e746f5f7bca33e/US4262632.pdf

51 Brustein, J. 2014. GPS as we know it happened because of Ronald Reagan. En: Bloomberg News. [Consultado el 24 de julio de 2022]. www.bloomberg.com/news/articles/2014-12-04/gps-as-we-know-it-happened-because-of-ronald-reagan

52 Rip, M.R. y Hasik, J.M. 2002. The precision revolution: GPS and the future of aerial warfare. Annapolis, MD (Estados Unidos), Naval Institute Press.

53 Sheets, K.D. 2018. The Japanese impact on global drone policy and law: Why a laggard United States and other nations should look to Japan in the context of drone usage. Indiana Journal of Global Legal Studies, 25(1): 513–537. www.repository.law.indiana.edu/ijgls/vol25/iss1/20

54 Mulla, D. y Khosla, R. 2016. Historical evolution and recent advances in precision farming. En: R. Lal y B.A. Stewart, (coords.) Soil-specific farming – Precision farming. Boca Ratón, FL (Estados Unidos), CRC Press.

55 Lely. 2022. Our history. En: Lely. Maassluis (Países Bajos). [Consultado el 1 de marzo de 2022]. www.lely.com/gb/about-lely/our-company/history

56 Sharipov, D.R., Yakimov, O.A., Gainullina, M.K., Kashaeva, A.R. y Kamaldinov, I.N. 2021. Development of automatic milking systems and their classification. IOP Conference Series: Earth and Environmental Science, 659: 012080. https://iopscience.iop.org/article/10.1088/1755-1315/659/1/012080

57 Rural Retailer. 2002. Arro TM targets growing need for Steering Assist®. In: Rural Retailer. [Consultado el 24 de julio de 2022]. www.ccimarketing.com/farmsupplier_com/pages/html1.asp

58 Reusch, S. 1997. Entwicklung eines reflexionsoptischen Sensors zur Erfassung der Stickstoffversorgung landwirtschaftlicher Kulturpflanzen [Desarrollo de un sensor óptico de reflexión para registrar el suministro de nitrógeno en los cultivos agrícolas]. Tesis doctoral. Arbeitskreis Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI [Grupo de trabajo de investigación y docencia de la Sociedad Max Eyth de Ingeniería Agrícola en la VDI].

59 Trimble. 2006. Trimble combines GPS guidance and rate control to automate agricultural spraying operations. En: Trimble. [Consultado el 24 de julio de 2022]. https://investor.trimble.com/news-releases/news-release-details/trimble-combines-gps-guidance-and-rate-control-automate

60 Ag Leader. 2022. History timeline. En: Ag Leader. [Consultado el 24 de julio de 2022]. www.agleader.com/our-history

61 Ecorobotix. 2022. A bit of history. En: Ecorobotix. [Consultado el 1 de marzo de 2022]. https://ecorobotix.com/en/a-bit-of-history

62 Naïo Technologies. 2022. Naïo Technologies, agricultural robotics pioneers. En: Naïo Technologies. [Consultado el 1 de marzo de 2022]. http://www.naio-technologies.com/en/naio-technologies/#:~:text=Founded%20in%202011%2C%20Na%C3%AFo%20Technologies,use%20of%20chemical%20weed%20killers

63 Claas. 2022. Product history. The combine harvester. En: Claas. [Consultado el 1 de marzo de 2022]. www.claas.co.uk/company/history/products/combines/lexion

64 Hands Free Hectare. 2018. Timeline. En: Hands Free Hectare. [Consultado el 1 de marzo de 2022]. https://www.handsfreehectare.co.uk/timeline.html

65 Smart Ag. 2018. Smart Ag unveils autocart driverless tractor technology at 2018 Farm Progress Show. En: OEM Off-highway. [Consultado el 1 de marzo de 2022]. www.oemoffhighway.com/trends/gps-automation/news/21020794/smart-ag-unveils-autocart-driverless-tractor-technology-at-2018-farm-progress-show

66 John Deere. 2022. John Deere reveals fully autonomous tractor at CES 2022. En: John Deere. [Consultado el 1 de marzo de 2022]. www.deere.com/en/news/all-news/autonomous-tractor-reveal

67 Birner, R., Daum, T. y Pray, C. 2021. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Applied Economic Perspectives and Policy, 43(4): 1260–1285. https://doi.org/10.1002/aepp.13145

68 Knight, C.H. 2020. Review: Sensor techniques in ruminants: more than fitness trackers. Animal, 14: s187–s195. https://doi.org/10.1017/S1751731119003276

69 Eastwood, C.R. y Renwick, A. 2020. Innovation uncertainty impacts the adoption of smarter farming approaches. Frontiers in Sustainable Food Systems, 4: 24. www.readcube.com/articles/10.3389%2Ffsufs.2020.00024

70 Hansen, B.G. 2015. Robotic milking-farmer experiences and adoption rate in Jæren, Norway. Journal of Rural Studies, 41: 109–117. https://doi.org/10.1016/j.jrurstud.2015.08.004

71 Steeneveld, W., Tauer, L.W., Hogeveen, H. y Oude Lansink, A.G.J.M. 2012. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. Journal of Dairy Science, 95(12): 7391–7398. https://doi.org/10.3168/jds.2012-5482

72 Drach, U., Halachmi, I., Pnini, T., Izhaki, I. y Degani, A. 2017. Automatic herding reduces labour and increases milking frequency in robotic milking. Biosystems Engineering, 155: 134–141.

73 Verified Market Research. 2020. Global milking robots market size by type, by herd size, by geographic scope and forecast. En: Verified Market Research. [Consultado el 24 de julio de 2022]. www.verifiedmarketresearch.com/product/milking-robots-market

74 Markets and Markets. 2018. Milking robots market by offering (hardware, software, service), milking robots system type (single-stall unit, multi-stall unit, automated milking rotary), herd size (below 100, between 100 and 1,000 and above 1,000), geography - Global forecast to 2023. En: Markets and Markets. [Consultado el 24 de julio de 2022]. www.marketsandmarkets.com/Market-Reports/milking-robots-market-170643611.html

75 Rodenburg, J. 2017. Robotic milking: Technology, farm design, and effects on work flow. Journal of Dairy Science, 100(9): 7729–7738. https://doi.org/10.3168/jds.2016-11715

76 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.

77 Ordolff, D. 2001. Introduction of electronics into milking technology. Computers and Electronics in Agriculture, 30: 125–149.

78 Banhazi, T.M., Lehr, H., Black, J.L., Crabtree, H., Schofield, P., Tscharke, M. y Berckmans, D. 2012. Precision Livestock Farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, 5(3): 1–9.

79 Lowenberg-DeBoer, J. 2018. The economics of precision agriculture. In J. Stafford, ed. Precision agriculture for sustainability, págs. 461–494. Londres, Burleigh Dodds Science Publishing. https://doi.org/10.1201/9781351114592

80 Colaço, A.F. y Bramley, R.G.V. 2018. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research, 218: 126–140. https://doi.org/10.1016/j.fcr.2018.01.007

81 Lachia, N., Pichon, L. y Tisseyre, B. 2019. A collective framework to assess the adoption of precision agriculture in France: description and preliminary results after two years. En: J.V. Stafford, ed. Precision agriculture ’19. págs. 851–857. https://doi.org/10.3920/978-90-8686-888-9_105

82 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5

83 Lowenberg-DeBoer, J., Behrendt, K., Ehlers, M.-H., Dillon, C., Gabriel, A., Huang, I.Y., Kumwenda, I. et al. 2021. Lessons to be learned in adoption of autonomous equipment for field crops. Applied Economic Perspectives and Policy, 44(2): 848–864. https://doi.org/10.1002/aepp.13177

84 Elias, M., Lowenberg-DeBoer, J., Behrendt, K. y Franklin, K. (en prensa). Economically optimal farmer supervision of crop robots.

85 Shockley, J., Dillon, C., Lowenberg-DeBoer, J. y Mark, T. 2021. How will regulation influence commercial viability of autonomous equipment in US production agriculture? Applied Economics Perspectives and Policy, 44(2): 865–878. https://doi.org/10.1002/aepp.13178

86 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf

87 Tarannum, N., Rhaman, Md.K., Khan, S.A. y Shakil, S.R. 2015. A brief overview and systematic approach for using agricultural robot in developing countries. Journal of Modern Science and Technology, 3(1): 88–101. https://zantworldpress.com/wp-content/uploads/2019/12/Paper-8.pdf

88 Reddy, N., Reddy, A.V., Pranavadithya, S. y Kumar, J. 2016. A critical review on agricultural robots. International Journal of Mechanical Engineering and Technology, 7(4): 183–188. https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_7_ISSUE_4/IJMET_07_04_018.pdf

89 Autor, D.H. 2015. Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3): 3–30. www.aeaweb.org/articles?id=10.1257/jep.29.3.3

90 Carvalho, F.K., Chechetto, R.G., Mota, A.A.B. y Antuniassi, U.R. 2020. Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2): 83–88. http://dx.doi.org/10.1564/v31_apr_07

91 Wang, C., Herbst, A., Zeng, A., Wongsuk, S., Qiao, B., Qi, P., Bonds, J. et al. 2021. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Science of The Total Environment, 777: 146181. https://doi.org/10.1016/j.scitotenv.2021.146181

92 Erickson, B. y Lowenberg-DeBoer, J. 2021. 2021 precision agriculture dealership survey confirms a data driven market for retailers. En: CropLife. [Consultado el 24 de julio de 2022]. www.croplife.com/precision/2021-precision-agriculture-dealership-survey-confirms-a-data-driven-market-for-retailers/#slide=87709-87729-3).

93 Kendall, H., Clark, B., Li, W., Jin, S., Jones, G.D., Chen, J., Taylor, J., Li, Z. y Frewer, Lynn, J. 2022. Precision agriculture technology adoption: a qualitative study of small-scale commercial “family farms” located in the North China Plain. Precision Agriculture, 23: 319–351. https://doi.org/10.1007/s11119-021-09839-2

94 Kumar, G., Engle, C. y Tucker, C. 2018. Factors driving aquaculture technology adoption. Journal of the World Aquaculture Society, 49(3): 447–476. https://doi.org/10.1111/jwas.12514

95 FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. https://doi.org/10.4060/ca9229es

96 Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T., Eguiraun, H. et al. 2018. Precision fish farming: A new framework to improve production in aquaculture. Biosystems Engineering, 173: 176–193. https://doi.org/10.1016/j.biosystemseng.2017.10.014

97 Shrimpbox. 2021. The Shrimpbox launch: The world’s first robotic shrimp farm. En: Atarraya. Ciudad de México. [Consultado el 24 de julio de 2022]. https://atarraya.ai/assets/pdf/ShrimpboxENG.pdf

98 Bergerman, M., Billingsley, J., Reid, J. y van Henten, E. 2016. Robotics in agriculture and forestry. SpringerLink. [Consultado el 8 de diciembre de 2021]. https://link.springer.com/chapter/10.1007/978-3-319-32552-1_56

99 Nitoslawski, S.A., Wong-Stevens, K., Steenberg, J.W.N., Witherspoon, K., Nesbitt, L. y Konijnendijk van den Bosch, C.C. 2021. The digital forest: Mapping a decade of knowledge on technological applications for forest ecosystems. Earth’s Future, 9(8): e2021EF002123. https://doi.org/10.1029/2021EF002123

100 Boitsov, A., Vagizov, M., Istomin, E., Aksenova, A. y Pavlov, V. 2021. Robotic systems in forestry. IOP Conference Series: Earth and Environmental Science, 806: 012034.

101 Allott, J., O’Kelly, G. y Pendergraph, S. 2020. Data: The next wave in forestry productivity. En: McKinsey & Company. [Consultado el 5 de enero de 2022]. www.mckinsey.com/industries/paper-forest-products-and-packaging/our-insights/data-the-next-wave-in-forestry-productivity

102 Hellström, T., Lärkeryd, P., Nordfjell, T. y Ringdahl, O. 2009. Autonomous forest vehicles: Historic, envisioned, and state-of-the-art. International Journal of Forest Engineering, 20(1): 31–38. https://doi.org/10.1080/14942119.2009.10702573

103 Visser, R. y Obi, O.F. 2021. Automation and robotics in forest harvesting operations: Identifying near-term opportunities. Croatian Journal of Forest Engineering, 42(1): 13–24.

104 Parker, R., Bayne, K. y Clinton, P.W. 2016. Robotics in forestry. New Zealand Journal of Forestry, 60(4): 8–14.

105 Finer, M. y Mamani, N. 2020. MAAP #31: Power of free high-resolution satellite imagery from Norway Agreement. En: Monitoring of the Amazon Andean Project. [Consultado el 24 de junio de 2022]. www.maaproject.org/2021/norway-agreement

106 Shamshiri, R., Kalantari, F., Ting, K.C., Thorp, K.R., Hameed, I.A., Weltzien, C., Ahmad, D. y Shad, Z.M. 2018. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering, 11: 1. https://ijabe.org/index.php/ijabe/article/view/3210

107 Mrema, G.C., Baker, D. y Kahan, D. 2008. Agricultural mechanization in sub-Saharan Africa: time for a new look. Agricultural Management, Marketing and Finance Occasional Paper n.º 22. Roma, FAO. www.fao.org/3/i0219e/i0219e00.pdf

108 Berhane, G., Dereje, M., Minten, B. y Tamru, S. 2017. The rapid – but from a low base – uptake of agricultural mechanization in Ethiopia: Patterns, implications and challenges. Documento de trabajo del ESSP n.º 105. Washington D. C., IFPRI y Addis Abeba, EDRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/131146

109 Kansanga, M., Andersen, P., Kpienbaareh, D., Mason-Renton, S., Atuoye, K., Sano, Y., Antabe, R. y Luginaah, I. 2019. Traditional agriculture in transition: examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. International Journal of Sustainable Development and World Ecology, 26(1): 11–24.

110 Keller, T., Sandin, M., Colombi, T., Horn, R. y Or, D. 2019. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 194: 104293. https://doi.org/10.1016/j.still.2019.104293

111 Wang, X., Yamauchi, F., Otsuka, K. y Huang, J. 2016. Wage growth, landholding, and mechanization in Chinese agriculture. World Development, 86: 30–45. https://doi.org/10.1016/j.worlddev.2016.05.002

112 Yamauchi, F. 2016. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Policy, 58(5): 62–69.

113 Daum, T., Adegbola, Y.P., Kamau, G., Kergna, A.O., Daudu, C., Zossou, R.C., Crinot, G.F. et al. 2020. Perceived effects of farm tractors in four African countries, highlighted by participatory impact diagrams. Agronomy for Sustainable Development, 40: 47. https://doi.org/10.1007/s13593-020-00651-2

114 Kansanga, M.M., Mkandawire, P., Kuuire, V. y Luginaah, I. 2020. Agricultural mechanization, environmental degradation, and gendered livelihood implications in northern Ghana. Land Degradation and Development, 31(11): 1422–1440. https://doi.org/10.1002/ldr.3490

115 Torero, M. 2019. Robotics and AI in food security and innovation: Why they matter and how to harness their power. En: J. von Braun, M.S. Archer, G.M. Reichberg y M. Sánchez Sorondo, (coords.). Robotics, AI, and humanity: Science, ethics, and policy, págs. 99-107. Springer.

Capítulo 3

1 Pingali, P. 2007. Chapter 54 Agricultural mechanization: Adoption patterns and economic impact. En: R. Evenson y P. Pingali, (coords.). Handbook of agricultural economics, págs. 2779-2805. Amsterdam, Elsevier. https://doi.org/10.1016/S1574-0072(06)03054-4

2 Bhattarai, M., Singh, G., Takeshima, H. y Shekhawat, R.S. 2020. Farm machinery use and the agricultural machinery industries in India. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 97-138. Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134090

3 Kirui, O. 2019. The agricultural mechanization in Africa: Micro-level analysis of state drivers and effects. ZEF-Discussion Papers on Development Policy n.º 272. Universidad de Bonn. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3368103

4 Berhane, G., Dereje, M., Minten, B. y Tamru, S. 2017. The rapid – but from a low base – uptake of agricultural mechanization in Ethiopia: Patterns, implications and challenges. Documento de trabajo del ESSP n.º 105. Washington D. C., IFPRI y Addis Abeba, EDRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/131146

5 Houssou, N. y Chapoto, A. 2014. The changing landscape of agriculture in Ghana: Drivers of farm mechanization and its impacts on cropland expansion and intensification. Documento de debate del IFPRI n.º 1392. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/128706/filename/128917.pdf

6 Adu-Baffour, F., Daum, T. y Birner, R. 2019. Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia. Food Policy, 84: 133–145. https://doi.org/10.1016/j.foodpol.2019.03.007

7 Kansanga, M.M., Mkandawire, P., Kuuire, V. y Luginaah, I. 2020. Agricultural mechanization, environmental degradation, and gendered livelihood implications in northern Ghana. Land Degradation and Development, 31(11): 1422–1440. https://doi.org/10.1002/ldr.3490

8 Ma, W., Renwick, A. y Grafton, Q. 2018. Farm machinery use, off-farm employment and farm performance in China. Australian Journal of Agricultural and Resource Economics, 62(2): 279–298. https://doi.org/10.1111/1467-8489.12249

9 Daum, T., Capezzone, F. y Birner, R. 2021. Using smartphone app collected data to explore the link between mechanization and intra-household allocation of time in Zambia. Agriculture and Human Values, 38: 411–429. https://doi.org/10.1007/s10460-020-10160-3

10 Haggblade, S., Hazell, P. y Reardon, T. 2010. The rural non-farm economy: prospects for growth and poverty reduction. World Development, 38(10): 1429–1441. https://doi.org/10.1016/j.worlddev.2009.06.008

11 Christiaensen, L., Demery, L. y Kuhl, J. 2011. The (evolving) role of agriculture in poverty reduction—An empirical perspective. Journal of Development Economics, 96(2): 239–254. https://doi.org/10.1016/j.jdeveco.2010.10.006

12 Salvatierra-Rojas, A., Nagle, M., Gummert, M., de Bruin, T. y Müller, T. 2017. Development of an inflatable solar dryer for improved postharvest handling of paddy rice in humid climates. International Journal of Agricultural and Biological Engineering, 10(3): 269–282. https://ijabe.org/index.php/ijabe/article/view/2444

13 Elbehri, A. y Sadiddin, A. 2016. Climate change adaptation solutions for the green sectors of selected zones in the MENA region. Future of Food: Journal on Food, Agriculture and Society, 4(3): 39–54. www.thefutureoffoodjournal.com/index.php/FOFJ/article/view/79

14 Jayne, T.S., Mather, D. y Mghenyi, E. 2010. Principal challenges confronting smallholder agriculture in sub-Saharan Africa. World Development, 38(10): 1384–1398. https://doi.org/10.1016/j.worlddev.2010.06.002

15 Yahaya, R. (en prensa). Market analysis for agricultural mechanisation in Ethiopia. Addis Abeba, CIMMYT.

16 FAO. 2022. Technical support for sustainable agricultural mechanization of smallholder farms for enhancing agricultural productivity and production, and reducing drudgery of women and young farmers. Proyecto de la FAO n.º TCP/NEP/3703. Roma. Documento interno.

17 FAO. 2022. Thinking about the future of food safety – A foresight report. Roma. https://doi.org/10.4060/cb8667en

18 Daum, T., Seidel, A., Getnet, B. y Birner, R. 2022. Animal traction, two-wheel tractors, or four-wheel tractors? A best-fit approach to guide farm mechanization in Africa. Hohenheim Working Papers on Social and Institutional Change in Agricultural Development. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4092687

19 Diao, X., Takeshima, H. y Zhang, X. 2020. An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134095

20 Win, M.T., Belton, B. y Zhang, X. 2020. Myanmar’s rapid agricultural mechanization: Demand and supply evidence. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 263-284. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_08

21 Baudron, F., Sims, B., Justice, S., Kahan, D.G., Rose, R., Mkomwa, S., Kaumbutho, P. et al. 2015. Re-examining appropriate mechanization in Eastern and Southern Africa: two-wheel tractors, conservation agriculture, and private sector involvement. Food Security, 7: 889–904. https://doi.org/10.1007/s12571-015-0476-3

22 Kahan, D., Bymolt, R. y Zaal, F. 2018. Thinking outside the plot: Insights on small-scale mechanisation from case studies in East Africa. The Journal of Development Studies, 54(11): 1939–1954. https://doi.org/10.1080/00220388.2017.1329525

23 Daum, T., Huffman, W. y Birner, R. 2018. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Economics Working Paper. Ames (Estados Unidos), Department of Economics, Iowa State University. https://lib.dr.iastate.edu/econ_workingpapers/47

24 FAO. 2019. Mechanization services in rural communities. Enhancing the resilience of smallholder farmers and creating job opportunities. Roma. www.fao.org/3/ca7139en/ca7139en.pdf

25 Alwang, J., Sabry, S., Shideed, K., Swelam, A. y Halila, H. 2018. Economic and food security benefits associated with raised-bed wheat production in Egypt. Food Security: The Science, Sociology and Economics of Food Production and Access to Food, 10(3): 589–601. https://EconPapers.repec.org/RePEc:spr:ssefpa:v:10:y:2018:i:3:d:10.1007_s12571-018-0794-3

26 Swelam, A. 2016. Raised-bed planting in Egypt: an affordable technology to rationalize water use and enhance water productivity. Amman, ICARDA (Centro internacional de investigación agrícola en las zonas secas). https://hdl.handle.net/20.500.11766/5900

27 Sims, B. y Kienzle, J. 2006. Farm power and mechanization for small farms in sub-Saharan Africa. Informe Técnico sobre Ingeniería Agrícola y Alimentaria N.º 3. Roma, FAO. www.fao.org/3/a0651e/a0651e.pdf

28 Flores Rojas, M. 2018. Gender sensitive labour saving technology. Drum seeder: saving time, effort and money. A case study from the Lao People’s Democratic Republic. Bangkok, FAO. www.fao.org/3/i9464en/i9464en.pdf

29 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

30 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.

31 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

32 Eastwood, C.R. y Renwick, A. 2020. Innovation uncertainty impacts the adoption of smarter farming approaches. Frontiers in Sustainable Food Systems, 4: 24. www.readcube.com/articles/10.3389%2Ffsufs.2020.00024

33 Hansen, B.G. 2015. Robotic milking-farmer experiences and adoption rate in Jæren, Norway. Journal of Rural Studies, 41: 109–117. https://doi.org/10.1016/j.jrurstud.2015.08.004

34 Steeneveld, W., Tauer, L.W., Hogeveen, H. y Oude Lansink, A.G.J.M. 2012. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. Journal of Dairy Science, 95(12): 7391–7398. https://doi.org/10.3168/jds.2012-5482

35 Drach, U., Halachmi, I., Pnini, T., Izhaki, I. y Degani, A. 2017. Automatic herding reduces labour and increases milking frequency in robotic milking. Biosystems Engineering, 155: 134–141.

36 Lowenberg-DeBoer, J. 1999. GPS based guidance systems for farmers. Purdue Agricultural Economics Report, págs. 8–9. Universidad Purdue. https://ag.purdue.edu/commercialag/home/paer-article/gps-based-guidance-systems-for-farmers

37 IoF. 2020. Internet of Food and Farm (IoF) 2020. www.valoritalia.it/wp-content/uploads/2019/08/IOF2020-Booklet-UseCases-2019-vDEF.pdf

38 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf

39 de Brauw, A. y Bulte, E. 2021. African Farmers, Value Chains and Agricultural Development: An Economic and Institutional Perspective. Palgrave Studies in Agricultural Economics and Food Policy. Cham, Springer International Publishing. https://link.springer.com/10.1007/978-3-030-88693-6

40 Daum, T. y Birner, R. 2017. The neglected governance challenges of agricultural mechanisation in Africa – insights from Ghana. Food Security, 9(5): 959–979. https://doi.org/10.1007/s12571-017-0716-9

41 Cramb, R. y Thepent, V. 2020. Evolution of agricultural mechanization in Thailand. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 165-201. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134091/filename/134311.pdf

42 Justice, S. y Biggs, S. 2020. The spread of smaller engines and markets in machinery services in rural areas of South Asia. Journal of Rural Studies, 73: 10–20. https://doi.org/10.1016/j.jrurstud.2019.11.013

43 Feder, G., Just, R.E. y Zilberman, D. 1985. Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2): 255–298. www.jstor.org/stable/1153228

44 Binswanger, H. y Donovan, G. 1987. Agricultural mechanization: issues and options. Estudio de políticas del Banco Mundial. Washington D. C., Banco Mundial.

45 Elverdin, P., Piñeiro, V. y Robles, M. 2018. Agricultural mechanization in Latin America. Documento de debate del IFPRI n.º 1740. IFPRI.

46 Takeshima, H. 2016. Market imperfections for tractor service provision in Nigeria: International perspectives and empirical evidence. Documento de trabajo del NSSP n.º 32. Washington D. C., IFPRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130446

47 Diao, X., Cossar, F., Houssou, N. y Kolavalli, S. 2014. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy, 48: 168–181. https://doi.org/10.1016/j.foodpol.2014.05.013

48 Takeshima, H. y Lawal, A. 2020. Evolution of agricultural mechanization in Nigeria. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 423-456. Washington D. C., IFPRI.

49 Shockley, J., Dillon, C., Lowenberg-DeBoer, J. y Mark, T. 2021. How will regulation influence commercial viability of autonomous equipment in US production agriculture? Applied Economics Perspectives and Policy, 44(2): 865–878. https://doi.org/10.1002/aepp.13178

50 Daum, T., Adegbola, Y.P., Kamau, G., Kergna, A.O., Daudu, C., Zossou, R.C., Crinot, G.F. et al. 2020. Perceived effects of farm tractors in four African countries, highlighted by participatory impact diagrams. Agronomy for Sustainable Development, 40: 47. https://doi.org/10.1007/s13593-020-00651-2

51 Daum, T. y Birner, R. 2020. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26: 100393. https://doi.org/10.1016/j.gfs.2020.100393

52 Kansanga, M., Andersen, P., Kpienbaareh, D., Mason-Renton, S., Atuoye, K., Sano, Y., Antabe, R. y Luginaah, I. 2019. Traditional agriculture in transition: examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. International Journal of Sustainable Development and World Ecology, 26(1): 11–24.

53 Keller, T., Sandin, M., Colombi, T., Horn, R. y Or, D. 2019. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 194: 104293. https://doi.org/10.1016/j.still.2019.104293

54 Dahlin, A.S. y Rusinamhodzi, L. 2019. Yield and labor relations of sustainable intensification options for smallholder farmers in sub-Saharan Africa. A meta-analysis. Agronomy for Sustainable Development, 39: 32. https://doi.org/10.1007/s13593-019-0575-1

55 FAO. 2021. El estado mundial de la agricultura y la alimentación 2021. Lograr que los sistemas agroalimentarios sean más resilientes a las perturbaciones y tensiones. Roma. https://doi.org/10.4060/cb4476es

56 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.

57 Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. y Bernoux, M. 2015. Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 203: 127–139. https://doi.org/10.1016/j.agee.2015.01.027

58 Giller, K.E., Witter, E., Corbeels, M. y Tittonell, P. 2009. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1): 23–34. https://doi.org/10.1016/j.fcr.2009.06.017

59 CSAM. 2022. Climate resilience practice. En: CSAM. Beijing. [Consultado el 24 de junio de 2022]. www.un-csam.org/KI-climate

60 Winkler, B., Lemke, S., Ritter, J. y Lewandowski, I. 2017. Integrated assessment of renewable energy potential: Approach and application in rural South Africa. Environmental Innovation and Societal Transitions, 24: 17–31. https://doi.org/10.1016/j.eist.2016.10.002

61 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5

62 Lowenberg-DeBoer, J. 2019. Making Technology Pay on Your Farm. Future Farm Technology Expo. Birmingham (Reino Unido).

63 Shockley, J.M., Dillon, C.R. y Shearer, S.A. 2019. An economic feasibility assessment of autonomous field machinery in grain crop production. Precision Agriculture, 20: 1068–1085. https://doi.org/10.1007/s11119-019-09638-w

64 Al-Amin, A.K.M.A., Lowenberg-DeBoer, J., Franklin, K. y Behrendt, K. 2021. Economic implications of field size for autonomous arable crop equipment. Land, Farm and Agribusiness Management Department, Universidad Harper Adams, Newport (Reino Unido).

65 Baudron, F., Nazare, R. y Matangi, D. 2019. The role of mechanization in transformation of smallholder agriculture in Southern Africa: Experience from Zimbabwe. En: R. Sikora, E. Terry, P. Vlek y J. Chitja, (coords.). Transforming agriculture in Southern Africa, págs. 152-159. Londres, Routledge. www.taylorfrancis.com/chapters/oa-edit/10.4324/9780429401701-21/role-mechanization-transformation-smallholder-agriculture-southern-africa-fr%C3%A9d%C3%A9ric-baudron-raymond-nazare-dorcas-matangi

66 Justice, S., Flores Rojas, M. y Basnyat, M. 2022. Empowering women farmers – A mechanization catalogue for practitioners. Roma, FAO. www.fao.org/3/cb8681en/cb8681en.pdf

67 APNI. 2020. Proceedings for the 1st African Conference on Precision Agriculture, Benguérir (Marruecos), 8–10 de diciembre de 2020. En: APNI. www.apni.net/2021/03/18/new-publication-proceedings-for-1st-african-conference-on-precision-agriculture

68 Onyango, C.M., Nyaga, J.M., Wetterlind, J., Söderström, M. y Piikki, K. 2021. Precision agriculture for resource use efficiency in smallholder farming systems in sub-Saharan Africa: A systematic review. Sustainability, 13(3): 1158. https://doi.org/10.3390/su13031158

69 Nyaga, J.M., Onyango, C.M., Wetterlind, J. y Söderström, M. 2021. Precision agriculture research in sub-Saharan Africa countries: a systematic map. Precision Agriculture, 22: 1217–1236. https://doi.org/10.1007/s11119-020-09780-w

70 Pouya, M.B., Diebre, R., Rambaldi, G., Zomboudry, G., Barry, F., Sedogo, M. y Lompo, F. 2020. Analyse comparative de l’agriculture de précision incluant l’utilisation de la technologie drone et de l’agriculture classique en matière de production de riz et de revenu des agriculteurs au Burkina Faso. Wageningen (Países Bajos), CTA. https://cgspace.cgiar.org/handle/10568/108460

71 Annor-Frempong, F. y Akaba, S. 2020. Socio-economic impact and acceptance study of drone-applied pesticide on maize in Ghana. Wageningen (Países Bajos), CTA. https://cgspace.cgiar.org/handle/10568/108594

72 Niyitanga, F., Kazungu, J. y Mamy, I.M. 2020. Willingness to pay and cost-benefit analyses for farmers acting on real-time, actionable UAS-based advice when growing wheat or potato in Gataraga sector, Musanze district, Rwanda. Wageningen (Países Bajos), CTA. https://cgspace.cgiar.org/handle/10568/108602

73 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf

74 Yawson, G. y Frimpong-Wiafe, B. 2018. The socio-economic benefits and impact study on the application of drones, sensor technology and intelligent systems in commercial scale agricultural establishments in Africa. International Journal of Agriculture and Economic Development, 6(2): 18–36. www.academia.edu/40998630/The_Socio-Economic_Benefits_and_Impact_Study_on_the_Application_of_Drones_Sensor_Technology_and_Intelligent_Systems_in_Commercial-Scale_Agricultural_Establishment_In_Africa

75 Ayamga, M., Tekinerdogan, B. y Kassahun, A. 2021. Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land, 10(2): 164. https://doi.org/10.3390/land10020164

76 Carvalho, F.K., Chechetto, R.G., Mota, A.A.B. y Antuniassi, U.R. 2020. Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2): 83–88. http://dx.doi.org/10.1564/v31_apr_07

77 Sissoko, A. 2020. Malian architect fights climate change with digital greenhouse. En: Reuters. [Consultado el 23 de junio de 2022]. www.reuters.com/article/us-climate-change-mali-agriculture-idUSKBN20713N

78 Elsäßer, R., Hänsel, G. y Feldt, T. 2021. Digitalizing the African livestock sector: Status quo and future trends for sustainable value chain development. Bonn (Alemania), GIZ. www.giz.de/de/downloads/giz2021_en_Digitalizing%20the%20African%20livestock%20sector.pdf

79 Okinda, B. 2020. Pastoralists turn to apps to find grazing fields. En: Nation. [Consultado el 1 de junio de 2022]. https://nation.africa/kenya/healthy-nation/pastoralists-turn-to-apps-to-find-grazing-fields-12554

80 Daum, T., Villalba, R., Anidi, O., Mayienga, S.M., Gupta, S. y Birner, R. 2021. Uber for tractors? Opportunities and challenges of digital tools for tractor hire in India and Nigeria. World Development, 144: 105480. https://doi.org/10.1016/j.worlddev.2021.105480

81 Tarannum, N., Rhaman, Md.K., Khan, S.A. y Shakil, S.R. 2015. A brief overview and systematic approach for using agricultural robot in developing countries. Journal of Modern Science and Technology, 3(1): 88–101. https://zantworldpress.com/wp-content/uploads/2019/12/Paper-8.pdf

82 Reddy, N., Reddy, A.V., Pranavadithya, S. y Kumar, J. 2016. A critical review on agricultural robots. International Journal of Mechanical Engineering and Technology, 7(4): 183–188. https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_7_ISSUE_4/IJMET_07_04_018.pdf

83 Autor, D.H. 2015. Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3): 3–30. www.aeaweb.org/articles?id=10.1257/jep.29.3.3

84 Aune, J.B., Coulibaly, A. y Giller, K.E. 2017. Precision farming for increased land and labour productivity in semi-arid West Africa. A review. Agronomy for Sustainable Development, 37: 16. https://doi.org/10.1007/s13593-017-0424-z

85 Nouhoheflin, T., Coulibaly, J.Y., D’Alessandro, S., Aitchédji, C.C., Damisa, M., Baributsa, D. y Lowenberg-DeBoer, J. 2017. Management lessons learned in supply chain development: the experience of PICS bags in West and Central Africa. International Food and Agribusiness Management Review, 20(3): 427–438. https://doi.org/10.22434/IFAMR2016.0167

86 Micle, D.E., Deiac, F., Olar, A., Drența, R.F., Florean, C., Coman, I.G. y Arion, F.H. 2021. Research on innovative business plan. Smart cattle farming using artificial intelligent robotic process automation. Agriculture, 11(5): 430. https://doi.org/10.3390/agriculture11050430

87 Gorbunova, A.V., Kostin, V.E., Pashkevich, I.L., Rybanov, A.A., Savchits, A.V., Silaev, A.A., Silaeva, E.Y. y Judaev, Y.V. 2020. Prospects and opportunities for the introduction of digital technologies into aquaculture governance system. IOP Conference Series: Earth and Environmental Science, 422(1): 012125. https://iopscience.iop.org/article/10.1088/1755-1315/422/1/012125

88 Saha, S., Hasan Rajib, R. y Kabir, S. 2018. IoT based automated fish farm aquaculture monitoring system. 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), págs. 201–206.

89 Neethirajan, S. y Kemp, B. 2021. Digital Livestock Farming. Sensing and Bio-Sensing Research, 32: 100408. https://doi.org/10.1016/j.sbsr.2021.100408

90 FAO, FIDA, OMS, PMA y UNICEF. 2022. El estado de la seguridad alimentaria y la nutrición en el mundo 2022. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma, FAO. https://doi.org/10.4060/cc0639es

Capítulo 4

1 FAO. 2021. Engaging with small and medium agrifood enterprises to guide policy making. A qualitative research methodological guide. Roma. www.fao.org/3/cb4179en/cb4179en.pdf

2 FAO. 2022. Cross cutting theme on inclusivity. Marco estratégico de la FAO para 2022–2025. Roma Documento interno.

3 Charlton, D., Hill, A.E. y Taylor, E.J. 2022. Automation and social impacts: winners and losers. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-09 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

4 Morton, J.F. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50): 19680–19685. www.pnas.org/doi/pdf/10.1073/pnas.0701855104

5 Davidova, S., Fredriksson, L., Gorton, M., Mishev, P. y Petrovici, D. 2012. Subsistence farming, incomes, and agricultural livelihoods in the new Member States of the European Union. Environment and Planning C: Government and Policy, 30(2): 209–227.

6 Sibhatu, K.T., Krishna, V.V. y Qaim, M. 2015. Production diversity and dietary diversity in smallholder farm households. Proceedings of the National Academy of Sciences, 112(34): 10657–10662. https://doi.org/10.1073/pnas.1510982112

7 Sibhatu, K.T. y Qaim, M. 2017. Rural food security, subsistence agriculture, and seasonality. PLOS ONE, 12(10): e0186406. https://doi.org/10.1371/journal.pone.0186406

8 Frelat, R., Lopez-Ridaura, S., Giller, K.E., Herrero, M., Douxchamps, S., Djurfeldt, A.A., Erenstein, O. et al. 2016. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences, 113(2): 458–463. https://doi.org/10.1073/pnas.1518384112

9 Hall, R., Scoones, I. y Tsikata, D. 2017. Plantations, outgrowers and commercial farming in Africa: agricultural commercialisation and implications for agrarian change. The Journal of Peasant Studies, 44(3): 515–537. https://doi.org/10.1080/03066150.2016.1263187

10 Barnett, T. 1996. Subsistence agriculture. En: T. Barnett, E. Blas y A. Whiteside, (coords.). AIDS Brief for sectoral planners and managers, págs. 6-10. Ginebra, OMS. https://corpora.tika.apache.org/base/docs/govdocs1/153/153175.pdf

11 Mendoza, E.E., Rigor, A.C., Mordido, C.C. y Marajas, A.A. 1982. Grain quality deterioration in on-farm level of operations. Proceedings of 5th Annual Grains Postharvest Technology Workshop, Los Baños, 1982. Manila, South East Asia Cooperative Postharvest Research and Development Programme.

12 Proctor, D.L. 1994. Grain storage techniques: Evolution and trends in developing countries. Boletín del Servicio Agrícola de la FAO n.º 10. Roma, FAO.

13 de la Peña, C. 2013. Thinking through the tomato harvester. En: Boom California. [Consultado el 25 de julio de 2022]. https://boomcalifornia.org/2013/06/24/thinking-through-the-tomato-harvester

14 Gazzola, P., Grechi, D., Martinelli, I. y Pezzetti, R. 2022. The innovation of the cashierless store: a preliminary analysis in Italy. Sustainability, 14(4): 2034. https://doi.org/10.3390/su14042034

15 Rudd, J. 2019. Checking out productivity in grocery stores. Beyond the Numbers: Productivity, 8(15). (U.S. Bureau of Labor Statistics, diciembre de 2019). www.bls.gov/opub/btn/volume-8/checking-out-productivity-in-grocery-stores.htm

16 Reinartz, W., Wiegand, N. e Imschloss, M. 2019. The impact of digital transformation on the retailing value chain. International Journal of Research in Marketing, 36(3): 350–366. https://doi.org/10.1016/j.ijresmar.2018.12.002

17 Spruit, D. y Almenar, E. 2021. First market study in e-commerce food packaging: Resources, performance, and trends. Food Packaging and Shelf Life, 29: 100698.

18 Zhang, Y. y Huang, L. 2015. China’s e-commerce development path and mode innovation of agricultural product based on business model canvas method. WHICEB 2015 Proceedings, 9. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1076&context=whiceb2015

19 Zeng, Y., Jia, F., Wan, L. y Guo, H. 2017. E-commerce in agri-food sector: a systematic literature review. International Food and Agribusiness Management Review, 20(4): 439–460.

20 Cai, Y., Lang, Y., Zheng, S. y Zhang, Y. 2015. Research on the influence of e-commerce platform to agricultural logistics: An empirical analysis based on agricultural product marketing. International Journal of Security and Its Applications, 9(10): 287–296. http://article.nadiapub.com/IJSIA/vol9_no10/26.pdf

21 FAO e Instituto Internacional de Investigación de Cultivos para las Zonas Tropicales Semiáridas (ICRISAT). 2022. Digital agriculture in action: selected case studies from India. Country Investment Highlights n.º 17. Roma, FAO e ICRISAT. www.fao.org/3/cc0017en/cc0017en.pdf

22 FAO y Universidad de Zhejiang. 2021. Rural e-commerce development: experience from China. Informe sobre agricultura digital. Roma, FAO. www.fao.org/3/cb4960en/cb4960en.pdf

23 FAO. 2015. Entendiendo el empleo rural decente. Roma. https://www.fao.org/3/bc270s/bc270s.pdf

24 Takeshima, H. y Vos, R. 2022. Agricultural mechanisation and child labour in developing countries. Estudio de antecedentes. Roma, FAO. www.fao.org/3/cb8550en/cb8550en.pdf

25 Deichmann, U., Goyal, A. y Mishra, D. 2016. Will digital technologies transform agriculture in developing countries? Policy Research Working Paper n.º 7669. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/24507

26 Nakasone, E. y Torero, M. 2016. A text message away: ICTs as a tool to improve food security. Agricultural Economics, 47: 49–59. https://mpra.ub.uni-muenchen.de/75854/1/MPRA_paper_75854.pdf

27 Sekabira, H. y Qaim, M. 2017. Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. Food Policy, 73: 95–103.

28 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf

29 Bonacich, E. y De Lara, J.D. 2009. Economic crisis and the logistics industry: Financial insecurity for warehouse workers in the inland empire. Documento de trabajo del IRLE n.º 2009–13. UCLA, Los Angeles (Estados Unidos). https://escholarship.org/uc/item/8rn2h9ch

30 Gittleman, M. y Monaco, K. 2020. Truck-driving jobs: Are they headed for rapid elimination? ILR Review, 73(1): 3–24.

31 England, P. 2010. The gender revolution: Uneven and stalled. Gender and Society, 24(2): 149–166.

32 Scott, A. y Davis-Sramek, B. 2021. Driving in a man’s world: Intra-occupational gender segregation in the trucking industry. Documento de trabajo. www.researchgate.net/publication/349104605_Driving_in_a_Man%27s_World_Intra-occupational_Gender_Segregation_in_the_Trucking_Industry

33 U.S. Bureau of Labor Statistics. 2022. Labor force statistics from the current population survey. En: U.S. Bureau of Labor Statistics. [Consultado el 18 de marzo de 2022]. www.bls.gov/cps/cpsaat11.htm

34 Rapsomanikis, G. 2015. The economic lives of smallholder farmers: An analysis based on household data from nine countries. Roma, FAO. www.fao.org/3/i5251e/i5251e.pdf

35 Adu-Baffour, F., Daum, T. y Birner, R. 2019. Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia. Food Policy, 84: 133145. https://doi.org/10.1016/j.foodpol.2019.03.007

36 Ogutu, S.O., Ochieng, D.O. y Qaim, M. 2020. Supermarket contracts and smallholder farmers: Implications for income and multidimensional poverty. Food Policy, 95: 101940. https://doi.org/10.1016/j.foodpol.2020.101940

37 Chege, C.G.K., Andersson, C.I.M. y Qaim, M. 2015. Impacts of supermarkets on farm household nutrition in Kenya. World Development, 72: 394–407. https://doi.org/10.1016/j.worlddev.2015.03.016

38 Baudron, F., Misiko, M., Getnet, B., Nazare, R., Sariah, J. y Kaumbutho, P. 2019. A farm-level assessment of labor and mechanization in Eastern and Southern Africa. Agronomy for Sustainable Development, 39(2): 17. https://doi.org/10.1007/s13593-019-0563-5

39 Guilhoto, J.J.M., Barros, A., Marjotta-Maistro, M. e Istake, M. 2002. Mechanization process of the sugar cane harvest and its direct and indirect impact over the employment in Brazil and in its 5 macro regions. Documento del MPRA n.º 38070. https://mpra.ub.uni-muenchen.de/38070/1/MPRA_paper_38070.pdf

40 Charlton, D. y Kostandini, G. 2021. Can technology compensate for a labor shortage? Effects of 287(g) immigration policies on the U.S. dairy industry. American Journal of Agricultural Economics, 103(1): 70–89. https://doi.org/10.1111/ajae.12125

41 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5

42 Ortega, A.C., de Jesus, C.M. y Mouro, M. de C. 2009. Mecanização e emprego na cafeicultura do Cerrado Mineiro [Mecanización y empleo en la caficultura de Cerrado Mineiro]. Revista Da ABET, 8(2). https://periodicos.ufpb.br/ojs2/index.php/abet/article/view/15268/8674

43 Posadas, B.C., Knight, P.R., Coker, R.Y., Coker, C.H., Langlois, S.A. y Fain, G. 2008. Socioeconomic impact of automation on horticulture production firms in the Northern Gulf of Mexico region. HortTechnology, 18(4): 697–704. https://doi.org/10.21273/HORTTECH.18.4.697

44 Charlton, D. y Taylor, J.E. 2020. Rural school access and the agricultural transformation. Agricultural Economics, 51(5): 641–654. https://doi.org/10.1111/agec.12583

45 Taylor, J.E. y Charlton, D. 2018. The farm labor problem: A global perspective. Amsterdam, Elsevier Academic Press.

46 Lachia, N., Pichon, L. y Tisseyre, B. 2019. A collective framework to assess the adoption of precision agriculture in France: description and preliminary results after two years. En: J.V. Stafford, ed. Precision agriculture ’19. págs. 851–857. https://doi.org/10.3920/978-90-8686-888-9_105

47 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 19-08 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

48 Ma, M., Saitone, T.L., Volpe, R.J., Sexton, R.J. y Saksena, M. 2019. Market concentration, market shares, and retail food prices: Evidence from the U.S. Women, Infants, and Children Program. Applied Economic Perspectives and Policy, 41(3): 542–562. https://doi.org/10.1093/aepp/ppy016

49 Torero, M. 2019. Robotics and AI in food security and innovation: Why they matter and how to harness their power. En: J. von Braun, M.S. Archer, G.M. Reichberg y M. Sánchez Sorondo, (coords.). Robotics, AI, and humanity: Science, ethics, and policy, págs. 99-107. Springer.

50 Banco Mundial. 2020. Poverty and shared prosperity 2020: Reversals of fortune. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/34496

51 FAO. 2022. Inclusion of persons with disabilities in FAO’s work: Information Note. Roma. (no publicado).

52 Filipski, M., Aboudrare, A., Lybbert, T.J. y Taylor, J.E. 2017. Spice price spikes: Simulating impacts of saffron price volatility in a gendered local economy-wide model. World Development, 91: 84–99. https://arefiles.ucdavis.edu/uploads/filer_public/e3/9d/e39d6c38-56a6-4f56-8831-8947ef0648e2/2017_filipski_et_al_wd_spice_price_spikes.pdf

53 Diiro, G.M., Fisher, M., Kassie, M., Muriithi, B.W. y Muricho, G. 2021. How does adoption of labor saving agricultural technologies affect intrahousehold resource allocations? The case of push-pull technology in Western Kenya. Food Policy, 102: 102114. http://oar.icrisat.org/11845/1/Impact%20of%20Push%20Pull%20Technology%20on%20Intra-Household%20Labour%20Allocation%20in%20Kenya.pdf

54 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

55 Vemireddy, V. y Choudhary, A. 2021. A systematic review of labor-saving technologies: Implications for women in agriculture. Global Food Security, 29: 100541.

56 GIZ (Sociedad Alemana de Cooperación Internacional). 2020. Gender-transformative change in practice: 6 case studies. Agricultural Technical Vocational Education and Training for Women (ATVET4W). Pretoria. www.giz.de/en/downloads/giz2020_en_GTC%20in%20Practice_6%20Case%20Studies_Interactive.pdf

57 Majumder, J. y Shah, P. 2017. Mapping the role of women in Indian agriculture. Annals of Anthropological Practice, 41(2): 46–54. https://doi.org/10.1111/napa.12112

58 Theis, S., Sultana, N. y Krupnik, T.J. 2018. Overcoming gender gaps in rural mechanization: Lessons from reaper-harvester service provision in Bangladesh. GCAN Project Note 8. CSISA Research Note 9. Washington D. C., IFPRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/132358

59 Flores Rojas, M. 2018. Gender sensitive labour saving technology. Drum seeder: saving time, effort and money. A case study from the Lao People’s Democratic Republic. Bangkok, FAO. www.fao.org/3/i9464en/i9464en.pdf

60 FAO. 2019. Fostering the uptake of labour-saving technologies: How to develop effective strategies to benefit rural women. Roma. www.fao.org/3/CA2731EN/ca2731en.pdf

61 Daum, T., Adegbola, P.Y., Adegbola, C., Daudu, C., Issa, F., Kamau, G., Kergna, A.O. et al. 2022. Mechanization, digitalization, and rural youth - Stakeholder perceptions on three mega-topics for agricultural transformation in four African countries. Global Food Security, 32: 100616. https://doi.org/10.1016/j.gfs.2022.100616

62 Kim, J. 2019. Innovative technology in the agricultural sectors: Opportunities for green jobs or exacerbation of rural youth unemployment? Proceedings of the Future of Work in Agriculture Conference. Washington D. C. https://farmlabor.ucdavis.edu/sites/g/files/dgvnsk5936/files/inline-files/Jeongha%20Kim%3B%20Ag%20Tech.pdf

63 Khanna, M. 2021. Digital transformation of the agricultural sector: Pathways, drivers and policy implications. Applied Economic Perspectives and Policy, 43(4): 1221–1242. https://doi.org/10.1002/aepp.13103

Capítulo 5

1 Rose, D.C., Lyon, J., de Boon, A., Hanheide, M. y Pearson, S. 2021. Responsible development of autonomous robotics in agriculture. Nature Food, 2: 306–309. https://doi.org/10.1038/s43016-021-00287-9

2 Klerkx, L. y Rose, D. 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, 24: 100347. https://doi.org/10.1016/j.gfs.2019.100347

3 Ag-Incentives. 2022. En: Ag-Incentives. [Consultado el 4 de mayo de 2022]. http://ag-incentives.org

4 FAO, FIDA, OMS, PMA y UNICEF. 2022. El estado de la seguridad alimentaria y la nutrición en el mundo 2022. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma, FAO. https://doi.org/10.4060/cc0639es

5 Daum, T. y Birner, R. 2017. The neglected governance challenges of agricultural mechanisation in Africa – insights from Ghana. Food Security, 9(5): 959–979. https://doi.org/10.1007/s12571-017-0716-9

6 Cramb, R. y Thepent, V. 2020. Evolution of agricultural mechanization in Thailand. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 165-201. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134091/filename/134311.pdf

7 Justice, S. y Biggs, S. 2020. The spread of smaller engines and markets in machinery services in rural areas of South Asia. Journal of Rural Studies, 73: 10–20. https://doi.org/10.1016/j.jrurstud.2019.11.013

8 Corporación Financiera Internacional (IFC). 2019. The market opportunity for Productive Use Leveraging Solar Energy (PULSE) in sub-Saharan Africa. Washington D. C. www.lightingglobal.org/wp-content/uploads/2019/09/PULSE-Report.pdf

9 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.

10 Ministerio de Transporte y Comunicaciones, Finlandia. 2011. Communications Market Act. www.finlex.fi/en/laki/kaannokset/2003/en20030393.pdf

11 Comisión Europea. 2020. Facing the challenges of broadband deployment in rural and remote areas: A handbook for project promoters and policy makers. www.byanatsforum.se/wp-content/uploads/2020/05/Broadband-handbook-2020pdf.pdf

12 Van Loon, J., Woltering, L., Krupnik, T.J., Baudron, F., Boa, M. y Govaerts, B. 2020. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agricultural Systems, 180: 102792. https://doi.org/10.1016/j.agsy.2020.102792

13 Diao, X., Takeshima, H. y Zhang, X. 2020. An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134095

14 Kwet, M. 2019. Digital colonialism is threatening the Global South. En: Aljazeera. [Consultado el 25 de julio de 2022]. www.aljazeera.com/opinions/2019/3/13/digital-colonialism-is-threatening-the-global-south

15 Ávila Pinto, R. 2018. ¿Soberanía digital o colonialismo digital?. Revista internacional de derechos humanos, 15(27): 15-27. https://sur.conectas.org/en/digital-sovereignty-or-digital-colonialism/

16 Unión Africana. 2020. The digital transformation strategy for Africa (2020-2030). Addis Abeba. https://au.int/sites/default/files/documents/38507-doc-dts-english.pdf

17 Smart Africa. 2022. AgriTech blueprint for Africa. https://smart.africa/board/login/uploads/71613-continental-agritech-blueprint-eng.pdf

18 FAO y UIT. 2017. E-agriculture strategy guide: A summary. Bangkok. www.fao.org/3/i6909e/i6909e.pdf

19 Ströh de Martínez, C., Feddersen, M. y Speicher, A. 2016. Food security in sub-Saharan Africa: A fresh look on agricultural mechanisation. How adapted financial solutions can make a difference. Estudio n.º 91. Bonn (Alemania), German Development Institute. www.die-gdi.de/uploads/media/Study_91.pdf

20 Bhattarai, M., Singh, G., Takeshima, H. y Shekhawat, R.S. 2020. Farm machinery use and the agricultural machinery industries in India: Status, evolution, implications, and lessons learned. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 97-138. Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134090

21 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf

22 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

23 Win, M.T., Belton, B. y Zhang, X. 2020. Myanmar’s rapid agricultural mechanization: Demand and supply evidence. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 263-284. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_08

24 Meyer, R. 2011. Subsidies as an instrument in agriculture finance: a review. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/bitstream/handle/10986/12696/707300ESW0P1120ies0as0an0Instrument.pdf?sequence=1&isAllowed=y

25 Houssou, N., Diao, X., Cossar, F., Kolavalli, S., Jimah, K. y Aboagye, P.O. 2013. Agricultural mechanization in Ghana: Is specialization in agricultural mechanization a viable business model? American Journal of Agricultural Economics, 95(5): 1237–1244. https://doi.org/10.1093/ajae/aat026

26 Daum, T., Huffman, W. y Birner, R. 2018. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Economics Working Paper. Ames (Estados Unidos), Department of Economics, Iowa State University. https://lib.dr.iastate.edu/econ_workingpapers/47

27 Grain Producers Australia (GPA), Tractor and Machinery Association (TMA) y Society of Precision Agriculture Australia (SPAA). 2021. Code of practice. Agricultural Mobile Field Machinery with Autonomous Functions in Australia. www.graincentral.com/wp-content/uploads/2021/08/Code-of-Practice.pdf

28 Lowenberg-DeBoer, J., Behrendt, K., Ehlers, M.-H., Dillon, C., Gabriel, A., Huang, I.Y., Kumwenda, I. et al. 2021. Lessons to be learned in adoption of autonomous equipment for field crops. Applied Economic Perspectives and Policy, 44(2): 848–864. https://doi.org/10.1002/aepp.13177

29 Justice, S., Flores Rojas, M. y Basnyat, M. 2022. Empowering women farmers – A mechanization catalogue for practitioners. Roma, FAO. www.fao.org/3/cb8681en/cb8681en.pdf

30 Flores Rojas, M. 2018. Gender sensitive labour saving technology. Drum seeder: saving time, effort and money. A case study from the Lao People’s Democratic Republic. Bangkok, FAO. www.fao.org/3/i9464en/i9464en.pdf

31 Comité de Seguridad Alimentaria Mundial (CSA). 2014. Principios para la inversion responsable en la agricultura y los sistemas alimentarios. Roma. https://www.fao.org/3/au866s/au866s.pdf

32 Alves, B.J.R., Madari, B.E. y Boddey, R.M. 2017. Integrated crop–livestock–forestry systems: prospects for a sustainable agricultural intensification. Nutrient Cycling in Agroecosystems, 108: 1–4. https://doi.org/10.1007/s10705-017-9851-0

33 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.

34 Northrup, D.L., Basso, B., Wang, M.Q., Morgan, C.L.S. y Benfey, P.N. 2021. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row–crop production. Proceedings of the National Academy of Sciences, 118(28): e2022666118.

35 FAO. 2020. Agricultura de conservación. En: FAO. Roma. [Consultado el 1 de agosto de 2022]. https://www.fao.org/conservation-agriculture/es

36 Jaleta, M., Baudron, F., Krivokapic-Skoko, B. y Erenstein, O. 2019. Agricultural mechanization and reduced tillage: antagonism or synergy? International Journal of Agricultural Sustainability, 17(3): 219–230. https://doi.org/10.1080/14735903.2019.1613742

37 Giller, K.E., Witter, E., Corbeels, M. y Tittonell, P. 2009. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1): 23–34. https://doi.org/10.1016/j.fcr.2009.06.017

38 Baudron, F., Nazare, R. y Matangi, D. 2019. The role of mechanization in transformation of smallholder agriculture in Southern Africa: Experience from Zimbabwe. En: R. Sikora, E. Terry, P. Vlek y J. Chitja, (coords.). Transforming agriculture in Southern Africa, págs. 152-159. Londres, Routledge. www.taylorfrancis.com/chapters/oa-edit/10.4324/9780429401701-21/role-mechanization-transformation-smallholder-agriculture-southern-africa-fr%C3%A9d%C3%A9ric-baudron-raymond-nazare-dorcas-matangi

39 FAO. 2022. Conducta empresarial responsable en la agricultura. En: FAO. Roma. [Consultado el 29 de junio de 2022]. https://www.fao.org/responsible-business-conduct-in-agriculture/es/

40 Comisión Europea. 2022. Economía justa y sostenible: la Comisión establece normas para que las empresas respeten los derechos humanos y el medio ambiente en las cadenas de suministro mundiales. Comunicado de prensa. Bruselas. https://ec.europa.eu/commission/presscorner/detail/es/ip_22_1145

41 Torero, M. 2019. Robotics and AI in food security and innovation: Why they matter and how to harness their power. En: J. von Braun, M.S. Archer, G.M. Reichberg y M. Sánchez Sorondo, (coords.). Robotics, AI, and humanity: Science, ethics, and policy, págs. 99-107. Springer.

42 Adu-Baffour, F., Daum, T. y Birner, R. 2019. Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia. Food Policy, 84: 133–145. https://doi.org/10.1016/j.foodpol.2019.03.007

43 Daum, T., Capezzone, F. y Birner, R. 2021. Using smartphone app collected data to explore the link between mechanization and intra-household allocation of time in Zambia. Agriculture and Human Values, 38: 411–429. https://doi.org/10.1007/s10460-020-10160-3

44 Sims, B., Hilmi, M. y Kienzle, J. 2016. Agricultural mechanization. A key input for sub-Saharan African smallholders. Manejo integrado de cultivos n.º 23. Roma, FAO. www.fao.org/3/i6044e/i6044e.pdf

45 Tsan, M., Totapally, S., Hailu, M. y Addom, B. 2019. The digitalisation of African agriculture report 2018-2019. Wageninghen (Países Bajos). CTA. www.cta.int/en/digitalisation-agriculture-africa

46 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital technologies in agriculture and rural areas – Status report. Roma, FAO. www.fao.org/3/ca4985en/CA4985EN.pdf

47 Charlton, D., Hill, A.E. y Taylor, E.J. 2022. Automation and social impacts: winners and losers. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 19-09 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.

48 Mapiye, O., Makombe, G., Molotsi, A., Dzama, K. y Mapiye, C. 2021. Towards a revolutionized agricultural extension system for the sustainability of smallholder livestock production in developing countries: The potential role of ICTs. Sustainability, 13(11): 5868. https://doi.org/10.3390/su13115868

49 Bhattacharyya, T., Wani, S.P. y Tiwary, P. 2021. Empowerment of stakeholders for scaling-up: digital technologies for agricultural extension. En: S.P. Wani, K.V. Raju y T. Bhattacharyya, (coords.). Scaling-up solutions for farmers, págs. 121-147. Cham, Springer International Publishing. https://link.springer.com/10.1007/978-3-030-77935-1_3

Anexo 1

1 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.

2 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.

back to top Volver arriba
-